

COURSE LONG NAME

EXAMINATION:

MODULE NAME SEMESTER — 1

DECEMBER 2016

DURATION: 2 HOURS

INTERNAL EXAMINAR:	Dr Aoife Hennesy Dr Denis Flynn	Date: Time: Venue:
D D		

EXTERNAL EXAMINAR:

INSTRUCTIONS TO CANDIDATES

- 1. All Questions Carry Equal Marks.
- 2. Attempt all Four Questions (25 marks each).

WATERFORD INSTITUTE OF TECHNOLOGY

Question 1

- (a) The universal set is $\{1, 2, 3, 4, 5, 6, \dots, 9\}$. Let $A = \{1, 2, 5, 6\}$, $B = \{2, 5, 7\}$ and $C = \{1, 3, 5, 7, 9\}$. Find the elements of the following sets:
 - (i) $(A \cup C) \setminus B$ (ii) $(B \triangle C) \setminus A$ We use plus enclosed in a circle for symmetric difference (5 marks)
- (b) Given the relation R such that $R = \{(m, n) \in R | m, n \in A, (m^2 n^2) \text{ divisible by } 4\}$ when A is the set $\{1, 3, 4, 8\}$
 - (i) Express the relation R as a set of ordered pairs.

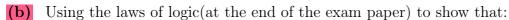
(ii) Draw an arrow diagram to represent this relation.

we called this a digraph

- (iii) Investigate whether the relation is symmetric, transitive and/or reflexive.
- (iv) State whether the relation is an equivalence relation or not..

Dont forget equivalence classes

(10 marks)


- (c) Determine if the following functions are one-to-one and/or onto and use these to determine whether the function is a bijection. Assume both functions are such where $f: R \to R$
 - (i) f(x) = 3x + 1(ii) $f(x) = x^2 - 5$ We did injective/surjective and bijective but focsed on discrete source and target sets not the set of real numbers.

(10 marks)

Question 2

(a) Construct the truth table for: $\neg(p \land q) \lor (r \land \neg q)$ and state whether it is a tautology, contradiction or a contingency, and why. (5 marks)

We called this "satisfiable"

We did very little of symbolically $\neg(p \lor q) \lor (\neg p \land q) \iff \neg p$ manipulating logical expressions. Instead, (10 marks) we verified identities using truth tables

- (c) Let $A = \{1, 2, 3, 4\}$. Determine the truth value of each of following statements, and explain why this is the case.
 - (i) $(\forall x \in A)(x + 5 < 12)$
 - (ii) $(\forall x \in A)(\forall y \in A)(x + y < 12)$
 - (iii) $(\exists x \in A)(x^2 + 2 \ge 18)$
 - (iv) $(\exists x \in A)(\exists y \in A)(x^2 + y^3 \le 12)$

(10 marks)

Question 3 We covered binomial expansion but we would not ask you to construct a full expansion (as in this question. Instead, we would just ask for a single term.

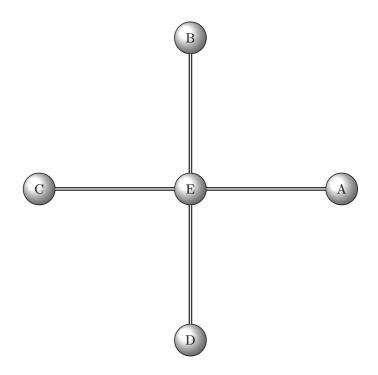
- (a) Expand fully the binomial expansion $(x 3y)^6$ Find the coefficient of the fourth term. (5 marks)
- (b) (i) How many numbers between 500 and 1000 can be made from the digits 2,4,6,8, if no digits are repeated.
- (ii) How many numbers between 500 and 1000 can be made from the digits 2,4,6,8, if digits may be repeated
 - (iii) Write the following series using $\sum_{r=1}^{\infty} \sum_{r=1}^{\infty} \sum$

$$1 - x + x^2 - x^3 + x^4 - \cdots$$

(iv) Find an expression for S_n of the series: $4 + 12 + 36 + \cdots$.

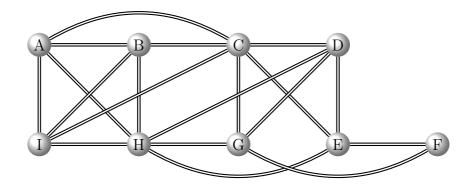
(10 marks)

we did not use this termonology - otherwise this question is doable

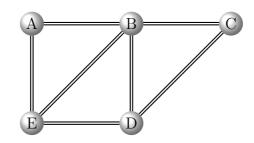

- (c) Consider the second-order homogeneous recurrence relation $a_n = 9a_{n-1} 18a_{n-2}$ with initial conditions $a_0 = 0$ and $a_1 = 1$.
 - (i) Find the next three terms of the sequence.
 - (ii) Find the general solution.
 - (iii) Find the unique solution with the given initial conditions.

(10 marks)

solution is wrong

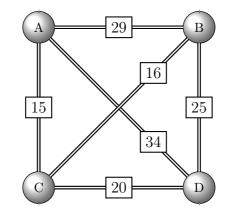

Question 4

- (a) (i) Draw the graph $K_{3,3}$
 - (ii) Investigate if the following graph is bipartite.



(5 marks)

(b) (i) Determine if there is an Euler Path or Euler Circuit in the following graph: If either an Euler path or Euler circuit exists, construct the path or circuit.


(ii) Determine whether the given graph has an Hamilton circuit. If it does, find such a circuit. It it does not, give an argument to show why no such circuit exists.

(10 marks)

(c) Solve the Travelling Salesman Problem for the following graph by using the Nearest-Neighbour Algorithm.

We did not cover this algorithm

Idempotent Laws	$(1a) A \cup A = A$ $(1b) A \cap A = A$
Associative Laws	$(2a) (A \cup B) \cup C = A \cup (B \cup C)$ $(2b) (A \cap B) \cap C = A \cap (B \cap C)$
Commutative Laws	$(3a) A \cup B = B \cup A$ $(3b) A \cap B = B \cap A$
Distributive Laws	$(4a) A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $(4b) A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Identity Laws	$(5a) A \cup \emptyset = A$ $(5b) A \cap \mathbb{U} = A$ $(6a) A \cup \mathbb{U} = \mathbb{U}$ $(6b) A \cap \emptyset = \emptyset$
Involution Laws	(7) (A')' = A.
Complement Laws	$(8a) A \cup A' = \mathbb{U}$ $(8b) A \cap A' = \emptyset$ $(9a) \mathbb{U}' = \emptyset$ $(9b) \emptyset' = \mathbb{U}$
Demorgan's Laws	$(10a) (A \cup B)' = A' \cap B' (10b) (A \cap B)' = A' \cup B'$

Laws of Algebra sets

Laws of Logic

Idempotent Laws	$\begin{array}{ccc} (1a) p \lor p \iff p \\ \hline (1b) p \land p \iff p \end{array}$
Associative Laws	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Commutative Laws	$(3a) \ p \lor q \iff q \lor p$
	$(3b) p \land q \iff q \land p$ $(4a) p \lor (q \land r) \iff (p \lor q) \land (p \lor r)$
	$ \begin{array}{ccc} (4b) p \wedge (q \lor r) \iff (p \wedge q) \lor (p \wedge r) \\ \hline (5a) p \lor F \iff p \end{array} $
Identity Laws	$\frac{(5b) p \land T \iff p}{(6a) p \lor T \iff T}$
	$(6b) p \wedge F \iff F$
Involution Laws	$(7) \neg \neg p \iff p.$
Complement Laws	$(8a) p \lor \neg p \iff T$
	$(8b) p \land \neg p \iff F$
	$(9a) \neg T \iff F$
	$(9b) \neg F \iff T$
Demorgan's Laws	$(10a) \neg (p \lor q) \iff \neg p \land \neg q$
Domorgan 5 Daws	$(10b) \neg (p \land q) \iff \neg p \lor \neg q$

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: COURSE SHORT NAME	Semester: 1 Page 1 of ??
Subject: MODULE NAME	Examiner: Dr Aoife Hennesy Dr Denis Flynn
Question 1	

(a)

(5 marks)

2.5 marks each for (i) and (ii)

- $\overline{A = \{1, 2, 5, 6\}}, B = \{2, 5, 7\}, C = \{1, 3, 5, 7, 9\}$
- (i) $(A \cup C) = \{1, 2, 3, 5, 6, 7, 9\}$ $(A \cup C) \setminus B = \{1, 3, 6, 9\}$
- (ii) $(B \triangle C) = \{1, 2, 3, 9\}$ $(B \triangle C) \setminus A = \{3, 9\}$
- (iii) $(B \triangle C) \setminus A = \{3, 9\}$ $B \cup C = \{1, 2, 3, 5, 7, 9\}$ $B \cap C = \{5, 7\}$ $(B \cup C) \setminus (B \cap C) = \{1, 2, 3, 9\}$ $B \setminus C = \{2\}$ $C \setminus B = \{1, 3, 9\}$ $(B \setminus C) \cup (C \setminus B) = \{1, 2, 3, 9\}$ $B \triangle C = \{1, 2, 3, 9\}$
- (b)

(10 marks)

2 marks for each question part

- (i) R=(1, 3), (5, 5), (1, 5), (5, 1), (1, 1), (5, 3)
- (ii) The relation is not symmetric because of: (1, 3), (5, 3) do not have symmetric counterparts.
- (iii) The relation is not reflexive because it does not contain: (3, 3)
- (iv) The relation is not antisymmetric because of: (1, 5), (5, 1)
- (v) Since Reflexive: False, Symmetric: False, AntiSymmetric: False, then R is not an equivalence relation.
- (c)

(10 marks)

5 marks each question part

- (i) staight line equation: Range=CoDomain \Rightarrow Onto. Unique image or each element of domain \Rightarrow one to one. Therefore this is a bijective function, i.e. satisfies both onto and one:one.
- (ii) quadratic equation, with Range, [-5, ∞) ≠ CoDomain ⇒ Not Onto. Not one to one, since there is a non unique preimage of elements in the range, e.g. preimage of 11 is either -4 or 4.

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: COURSE SHORT NAME	Semester: 1 Page 2 of ??
Subject: MODULE NAME	Examiner: Dr Aoife Hennesy Dr Denis Flynn
Question 2	

(a)

(5 marks)

(10 marks)

$\frac{5}{8}$ marks each correct line

(i) Using truth table

р	q	r	P(p,q,r)
False	False	False	True
False	False	True	True
False	True	False	True
False	True	True	True
True	False	False	True
True	False	True	True
True	True	False	False
True	True	True	False

Table 1: Truth table

(b)

(i) Using tables at end of paper **2 marks each** for the following steps. LHS: $\neg (p \lor q) \lor (\neg p \land q)$ DeMorgan: $(\neg p \land \neg q) \lor (\neg p \land q)$ Distrib: $\neg p \land (\neg q \lor q)$ Complement: $\neg p \land T$ Identity: $\neg p$ (10 marks)

(i) (a) TRUE (Truth set =A) 2 marks
(b) TRUE (truth set =A × A) 3 marks
(c) TRUE (Truth set ={4} ≠ Ø) 2 marks
(d) TRUE (Truth set ={(3,1), (2,1), (3,1), (1,1), (1,2)} ≠ Ø). Student indicating any member of truth set - 3 marks

	WATERFORD INSTITUTE (OF TECHNOLOGY
	OUTLINE MODEL ANSWERS &	
Co	urse: COURSE SHORT NAME	Semester: 1 Page 3 of ?? Dr Aoife Hennesy
	oject: MODULE NAME	Examiner: Dr Aone Hennesy Dr Denis Flynn
	stion 3	
(a)		(5 marks)
(i)	3 marks for correct expansion. $x^6 - 18x^5y + 135$ $1458xy^5 + 729y^6$	
	$= x^{6} - 18x^{5}y + 135x^{4}y - 540x^{3}y^{3} + 685x^{2}y^{4} - 243$ 2 marks for correct coeff. Fourth term coefficient: -540 $x^{7}y^{4}$ in the expansion of $(x + 3y)^{11}$: $\binom{11}{4} \times x^{7}(3y)^{4} = \binom{11}{4} \times 81x^{7}y^{4} = 26730x^{7}y^{4}$	$3(6)xy^5 + 729y^6$
	coeff = 26730	
(b)		(10 marks)
2 r	narks each for parts (i) and(ii). 3 marks eac	h for rest
(i)	If no repetition then, only 3 digit numbers are po $\Rightarrow 4!$	
(ii)	if Repetition allowed: Four choices for each number	er 4^3 .
(iii)	$\sum_{r=1}^{\infty} (-1)^{j+1} x^j$	
(iv)	$4(1+3+9+\cdots) = 4\sum_{j=1}^{\infty} 3j$	
(c)		(10 marks)
(i)	$a_2 = 9; a_3 = 63; a_4 = 405;$ 1 r 3 total	nark each .
(ii)	$a_n = 9a_{n-1} - 18$ $x^2 = 9x - 18 \boxed{1}$ $(x - 6)(x - 3) = 0 \boxed{0.5 \text{ ma}}$ General Solution: $a_n = c_1(6)^n + c_2$	rk

3.5 total

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: COURSE SHORT NAME	Semester: 1 Page 4 of ??	
Subject: MODULE NAME	Examiner: Dr Aoife Hennesy Dr Denis Flynn	

(iii)

Initial conditions:

$$0 = c_1 + c_2 \ \boxed{\textbf{0.5 mark}}$$

$$1 = 6c_1 + 3c_2 \ \boxed{\textbf{0.5 mark}}$$

$$c_1 = \frac{1}{3} \ \boxed{\textbf{0.5 mark}}$$

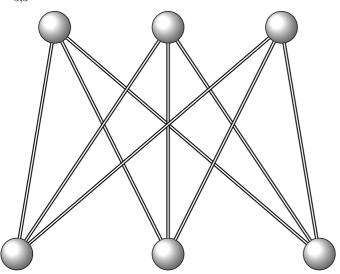
$$c_2 = -\frac{1}{3} \ \boxed{\textbf{0.5 mark}}$$
Unique Solution:
$$a_n = \frac{1}{3}(6^n - 3^n) \ \boxed{\textbf{1 mark}}$$

$$a_n = 3^{n-1}(2^n - 1) \ \boxed{\textbf{0.5 mark}}$$

3.5 total

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: COURSE SHORT NAME	Semester: 1 Page 5 of ??	
Subject: MODULE NAME	Examiner: Dr Aoife Hennesy Dr Denis Flynn	
Question 4		


(a)

(b)

(5 marks)

3 marks first part, 2 marks for second

(i) *K*_{3,3}

- (ii) Bipartite: $V_1 = \{A, B, C, D\}$ and $V_2 = \{E\}$.
 - _____

(10 marks)

6 marks and 4 marks for parts (i) and (ii) resp.

- (i) From the theorem, there is an Euler circuit because every vertex has an even degree. The circuit is as follows: $\{a, b, c, d, e, f, g, h, i, a, h, b, i, c, e, h, d, g, c, a\}$
- (ii) This graph has a Hamilton circuit. $\{a, b, c, d, e, a\}$ is a circuit.
- (c) _____

(10 marks)

(i) Student should be pick one of {A,B,C,D}
Start at A, nearest A,C,B,D cost: 15+16+25=56.
Start at B, nearest B,C,A,D cost: 16+15+34=65.
Start at C, nearest C,A,B,D cost: 15+29+25=69.
Start at D, nearest D,C,A,B cost: 20+15+29=64.
Student correctly choosing any of above paths and finding total weight = 10 marks.
Student correctly choosing any of above paths =5, correct edge weight = 1.5 x 3, correct sum 0.5.