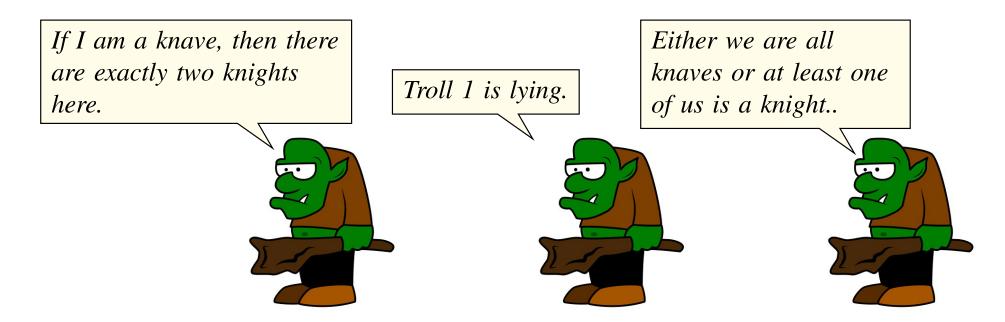


Outline

- Propositions and fundamental logical operators (AND, OR and NOT).
- Evaluating logical expression using truth tables.
- Satisfiability, Tautologies and Contradictions.

Thought for the day ...

While walking through a fictional forest, you encounter three identical trolls guarding a bridge. Each troll is either a knight, who always tells the truth, or a knave, who always lies. The trolls will not let you pass until you correctly identify each as either a knight or a knave. Each troll makes a single statement:



Which troll are knights? and which are knaves?

Outline

1. Introduction

- Propositional logic is concerned with analysing propositions (true or false statements).
- A proposition may be atomic or compound (build up using logical connectives).
- Constructing compound propositions using *And*, *Or* and *Not*.

2. Truth tables

- Evaluating an expression for all possible input combinations.
- 3. Tautologies and Contradictions
 - Statements that are always true or always false.

21

Logic is "science of reasoning"

- Allows us to represent knowledge in precise, unambiguous way.
- Allows us to make valid inferences using a set of consistent rules.
- Roots of logic date back to the ancient Greeks, e.g., Aristotle.
- Greeks were interested in valid logical inference rules, such an syllogisms:

"All men are mortal. Socrates is a man. Therefore, Socrates is mortal."

The Partially Examined Life podcast: www.partiallyexaminedlife.com The Fallacy-a-Day Podcast: http://fallacyaday.com

Propositional Logic

• The building blocks of propositional logic are propositions

Definition 1 (Proposition)

A proposition (statement) is a sentence that is either True or False.

• Examples:

"Java is a programming language."	True
"Cork is the capital of Ireland."	False
"1 + 2 = 3"	True
"Today is Tuesday."	depends
"The universe is fine-tuned."	unknown (at present)

- Examples of sentences that are not propositions/statements:
 - "*How are you*?" A question cannot be assign a **True/False** value.
 - "Stop sleeping in class!" An order cannot be assign a True/False value.
 - "Correct horse battery staple."
 - "This sentence is false."

— Pathological example.

— Not a sentence.

Propositional Variables, Truth Value

Given a proposition we are interested in knowing its truth value.

Definition 2 (Truth Value)

The truth value of a proposition identifies whether a proposition is true (written **True** or **T** or 1) or false (written **False** or **F** or 0)

Question

What is truth value of "Tuesday in the day after Sunday"?

F

>Notation>

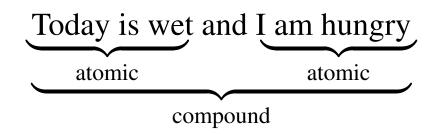
- Variables that represent propositions are called propositional variables.
- Denote propositional variables using lower-case letters, such as p, p₁,
 p₂, q, r, s, ...
- Truth value of a propositional variable is either **T** or **F**.

Compound vs Atomic Propositions

- Propositional logic allows constructing more complex propositions from atomic ones.
- More complex propositions formed using logical connectives (also called boolean connectives or logical operators).
- The three basic logical connectives:

Connective	Symbol	Python
conjunction (AND)	\wedge	and
disjunction (OR)	\lor	or
negation (NOT)	-	not

• Propositions formed using these logical connectives called compound propositions; otherwise called atomic propositions.



Exercise

Classify each of the sentences below as an atomic statement, a compound statement, or not a statement at all.

- **1** The sum of the first 100 odd positive integers.
- ② Everybody needs somebody sometime.
- **3** Waterford will win the All-Ireland or I'll eat my hat.
- Go to your room!
- S Every natural number greater than 1 is either prime or composite.
- This sentence is false.

- Negation of a proposition, p, written, $\neg p$, represents the proposition: *"It is not the case that p."*
- What is the relationship between the truth value of p and $\neg p$?

If *p* is **T**, then $\neg p$ is **F** and vice versa.

• In simple English, what is $\neg p$ if p stands for ...

$$p$$
 $\neg p$ "Today is Tuesday.""Today is not Tuesday."" $1 + 1 = 2$ "" $1 + 1 \neq 2$ "

• Properties of NOT

•
$$\neg \neg p = p$$

Conjunction (AND)

• Conjunction of two propositions, p and q, written as $p \wedge q$, is the proposition:

"p and q"

• What is the relationship between the truth value of p and of q and the truth value of $p \land q$?

$$p \wedge q = \begin{cases} \mathbf{T} & \text{if both } p \text{ is } \mathbf{T} \text{ and } q \text{ is } \mathbf{T} \\ \mathbf{F} & \text{otherwise} \end{cases}$$

>Example >

What is the conjunction and the truth value of $p \land q$ for ...

•
$$p =$$
 "It is a autumn semester", $q =$ "Today is Thursday"

•
$$p =$$
"It is Tuesday", $q =$ "It is morning"

Disjunction (OR)

• Disjunction of two propositions, p and q, written as $p \lor q$, is the proposition

"p or q"

What is the relationship between the truth value of *p* and of *q* and the truth value of *p* ∨ *q*?

$$p \lor q = \begin{cases} \mathbf{T} & \text{if either } p \text{ is } \mathbf{T} \text{ or } q \text{ is } \mathbf{T}, \text{ or both are } \mathbf{T} \\ \mathbf{F} & \text{otherwise} \end{cases}$$

Example

What is the disjunction and the truth value of $p \lor q$ for ...

•
$$p =$$
 "It is a autumn semester", $q =$ "Today is Thursday"

•
$$p =$$
 "It is Friday", $q =$ "It is morning"

Python supports the fundamental logical connectives (programmers call them "logical operators")

Logical Connective	Math	Python Operator
conjunction (AND)	\wedge	and
disjunction (OR)	\vee	or
negation (NOT)	_	not

Outline

1. Introduction

- Propositional logic is concerned with analysing propositions (true or false statements).
- A proposition may be atomic or compound (build up using logical connectives).
- Constructing compound propositions using *And*, *Or* and *Not*.

2. Truth tables

- Evaluating an expression for all possible input combinations.
- 3. Tautologies and Contradictions
 - Statements that are always true or always false.

13

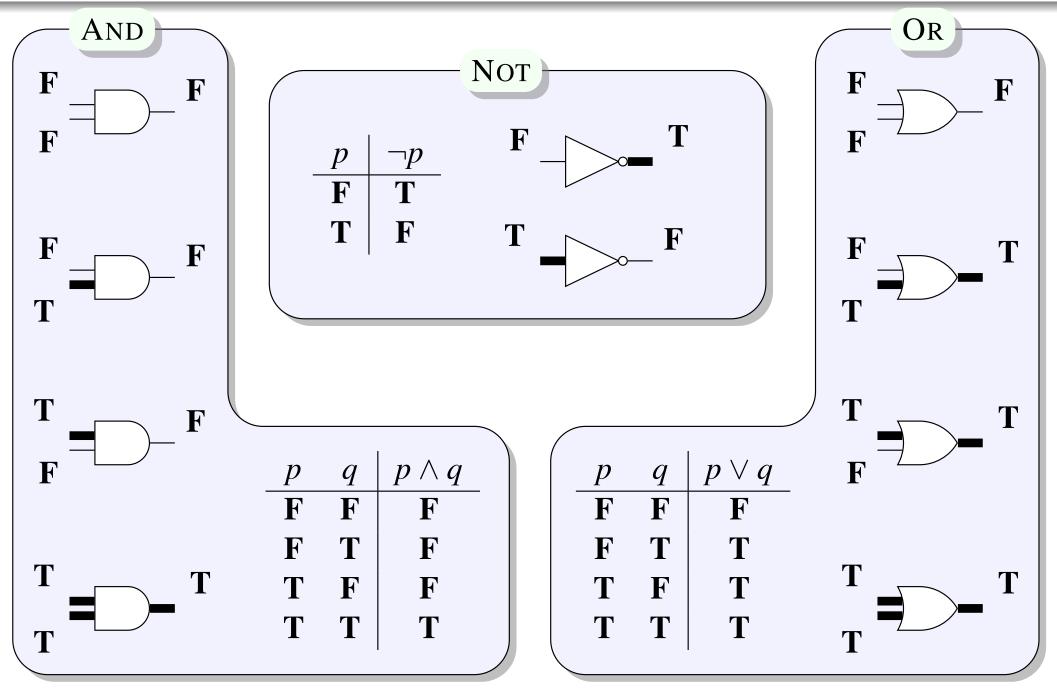
21

Truth tables Propositional Formulas and Truth Tables

- A propositional formula is logical expression constructed from atomic and compound propositions and logical connectives.
- A truth table for a propositional formula, *A*, shows the truth value of *A* for every possible value of its constituent atomic propositions.

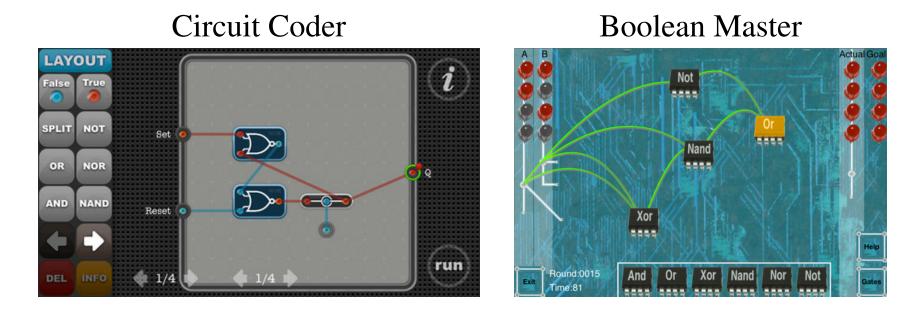
Negation	Conjunction	Disjunction	
	$p q p \land q$	$p q p \lor q$	
$p \mid \neg p$	F F F	F F F	
F T	F T F	F T T	
$\mathbf{T} \mid \mathbf{F}$	T F F	T F T	
,	T T T	T T T	
Not	AND	Or	

Truth tables and Logic Gates



Other Resources

>iPad/iPhone Apps (assume similar on Android)



• https://class.coursera.org/cs101/lecture/17 Part of the Computer Science 101 by Nick Parlante on coursera.

Constructing Truth Tables

Useful strategy for constructing truth tables for a formula:

STEP 1 Identify the constituent atomic propositions of the formula.

STEP 2 Identify compound propositions in within the formula in increasing order of complexity, including the formula itself.

STEP 3 Construct a table enumerating all combinations of truth values for atomic propositions.

STEP 4 Fill in values of compound propositions for each row.

>Examples >

Construct truth tables for the following formulas:

$$\bullet \quad (p \lor q) \land \neg p$$

$$(p \land q) \lor (\neg p \land \neg q)$$

$$(p \lor q \lor \neg r) \land r$$

Example 1: $(p \lor q) \land \neg p$

STEP 1 Identify the constituent atomic propositions $\dots p$ and q

- **STEP 2** Identify compound propositions ...
- **STEP 3** Enumerate all combinations of truth values for atomic propositions ...

STEP 4 Fill in values of compound propositions for each row ...

p	q	$p \lor q$	$\neg p$	$(p \lor q) \land \neg p$
F	F	\mathbf{F}	Τ	F
F	Τ	Τ	Τ	Τ
Τ	F	Т	\mathbf{F}	F
Τ	Τ	Τ	\mathbf{F}	F

Example 2: $(p \land q) \lor (\neg p \land \neg q)$

STEP 1 Identify the constituent atomic propositions ... p and q

- **STEP 2** Identify compound propositions ...
- **STEP 3** Enumerate all combinations of truth values for atomic propositions ... **STEP 4** Fill in values of compound propositions for each row ...

р	q	$(p \wedge q)$	$\neg p$	$\neg q$	$(\neg p \land \neg q)$	$(p \land q) \lor (\neg p \land \neg q)$
F	F	F	Τ	Τ	Τ	Τ
F	Т	F	Τ	F	\mathbf{F}	F
Τ	F	F	F	Τ	\mathbf{F}	\mathbf{F}
Τ	Τ	Т	\mathbf{F}	F	\mathbf{F}	Τ

Example 3:
$$(p \lor q \lor \neg r) \land r$$

STEP 1 Identify the constituent atomic propositions $\dots p, q$, and r

STEP 2 Identify compound propositions ...

STEP 3 Enumerate all combinations of truth values for atomic propositions ... **STEP 4**) Fill in values of compound propositions for each row ...

p	q	r	$\neg r$	$(p \lor q \lor \neg r)$	$(p \lor q \lor \neg r) \land r$
F	\mathbf{F}	F	Т	Τ	F
F	\mathbf{F}	Τ	F	\mathbf{F}	F
F	Τ	F	Τ	Τ	F
F	Τ	Τ	\mathbf{F}	Τ	Τ
Τ	\mathbf{F}	F	Τ	Τ	F
Τ	\mathbf{F}	Τ	F	Τ	Τ
Τ	Τ	F	Τ	Τ	F
Τ	Τ	Τ	\mathbf{F}	Τ	Τ

Outline

1. Introduction

- Propositional logic is concerned with analysing propositions (true or false statements).
- A proposition may be atomic or compound (build up using logical connectives).
- Constructing compound propositions using *And*, *Or* and *Not*.

2. Truth tables

- Evaluating an expression for all possible input combinations.
- 3. Tautologies and Contradictions
 - Statements that are always true or always false.

21

- Propositional logic is concerned with analysing propositions (true or false statements).
- A proposition may be atomic or compound (build up using logical connectives).
- Constructing compound propositions using *And*, *Or* and *Not*.

2. Truth tables

- Evaluating an expression for all possible input combinations.
- 3. Tautologies and Contradictions
 - Statements that are always true or always false.

13

21

Tautologies and Contradictions

Satisfiable, Tautologies and Contradictions

Satisfiable

A proposition is satisfiable if it is **True** for at least one set of inputs (case).

Tautology

A tautology is an expression involving logical variables that is **True** in all cases.

• Examples

•
$$p \vee \neg p$$

"Tomorrow, I will be dead or I will be alive"

• $(p \land q) \lor (p \land \neg q) \lor \neg p$

>Contradiction>

A contradiction is an expression involving logical variables that is **False** in all cases.

- Examples
 - $p \land \neg p$

"On Friday, I will win the lottery and not win the lottery."