

#### Outline

- Constructing arguments in propositional logic
- Normal forms

#### 1. Building Arguments

• Our final topic on logic deals with constructing and validating arguments. We start by giving examples of valid and non-valid arguments and define various concepts that we will need to breakdown an argument.

#### 2. Inference Rules for Propositional Logic

• Breaking down arguments take effort. To simplify things we will collect some standard arguments which we will use, like lego bricks, when working with complicated arguments.

#### 3. Using the Rules of Inference to Build Valid Arguments

- In our final topic in logic, we will use the properties of logical operators to construct a valid argument.
- This is a relatively advanced topic and could be ignored until you are comfortable with the earlier topics in logic.

#### 2

#### 15

# Notation

Single-line vs Double-line Arrows

For the purpose of this module the single line arrows (representing the IFTHEN and IFF connectives)

 $\rightarrow$  and  $\leftrightarrow$ 

mean the same thing as the corresponding double-line arrow

 $\Rightarrow$  and  $\Leftrightarrow$ 

I will use the double-lined arrows in places where I want to treat a complicated proposition as two smaller propositions. For example, I want to think of the proposition

$$(p \rightarrow q) \land \neg q \implies \neg p$$

in terms of the two proposition  $(p \rightarrow q) \land \neg q$  and  $\neg p$ .

# Motivation

Remember the Socrates example when we started Logic.

"All men are mortal. Socrates is a man. Therefore, Socrates is mortal."

Here we have two premises:

- All men are mortal
- Socrates is a man.

and the conclusion:

- Socrates is mortal.
- **Q:** How do we get the conclusion from the premises?

A: We construct an argument, a sequence of propositions that follow from the rules of inference until we reach the conclusion.

# Motivation

Remember the Socrates example when we started Logic.

"All men are mortal. Socrates is a man. Therefore, Socrates is mortal."

Here we have two premises:

- All men are mortal
- Socrates is a man.

and the conclusion:

- Socrates is mortal.
- **Q:** How do we get the conclusion from the premises?

**A:** We construct an argument, a sequence of propositions that follow from the rules of inference until we reach the conclusion.



# Arguments

### Definition 1 (Argument)

A argument in propositional logic is a sequence of propositions. All but the final proposition are called premises. The last statement is the conclusion. The argument is valid if the premises imply the conclusion.

• If the premises are  $p_1, p_2, \dots, p_n$  and the conclusion is q then the argument is valid iff

$$(p_1 \wedge p_2 \wedge \cdots \wedge p_n) \rightarrow q$$

is a tautology.

- We could use truth tables to test if an argument is valid construct the above expression, then build the truth table and check the output column.
- Alternatively, we could sequently apply inference rules to arrive at the conclusion.
- Inference rules are simple arguments that will be used to construct more complex argument forms.

#### 1. Building Arguments

• Our final topic on logic deals with constructing and validating arguments. We start by giving examples of valid and non-valid arguments and define various concepts that we will need to breakdown an argument.

#### 2. Inference Rules for Propositional Logic

• Breaking down arguments take effort. To simplify things we will collect some standard arguments which we will use, like lego bricks, when working with complicated arguments.

#### 3. Using the Rules of Inference to Build Valid Arguments

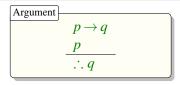
- In our final topic in logic, we will use the properties of logical operators to construct a valid argument.
- This is a relatively advanced topic and could be ignored until you are comfortable with the earlier topics in logic.

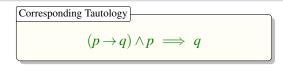
#### 2

#### 6

#### 15

## Detachment (Modus Ponens)





 Example

 Let

 p = "It is snowing." 

 q = "I will study discrete maths." 

 Then the argument is

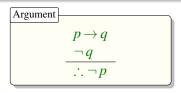
 "If it is snowing, then I will study discrete maths."

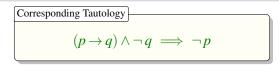
 "It is snowing."

 Therefore "I will study discrete maths."

7 of 23

### Indirect Reasoning (Modus Tollens)





Example Let

p ="It is snowing."

q = "I will study discrete maths."

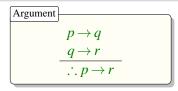
Then the argument is

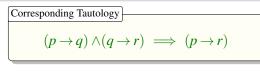
"If it is snowing, then I will study discrete maths."

"I will not study discrete maths."

Therefore "It is not snowing."

# Chain Rule (Hypothetical Syllogism)





Example Let

p ="It is snowing."

q = "I will study discrete maths."

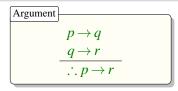
r = "I will get an A."

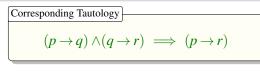
Then the argument is

"If it is snowing, then I will study discrete maths." "If I will study discrete maths, then I will get an A."

Therefore "If it is snowing, then I will get an A."

# Chain Rule (Hypothetical Syllogism)





Example Let

p ="It is snowing."

q = "I will study discrete maths."

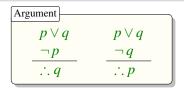
r = "I will get an A."

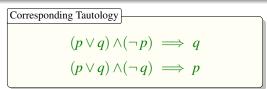
Then the argument is

"If it is snowing, then I will study discrete maths." "If I will study discrete maths, then I will get an A."

Therefore "If it is snowing, then I will get an A."

# Disjunctive Simplification (Disjunctive Syllogism)





# Example Let p = "I will study discrete maths."q = "I will study programming."

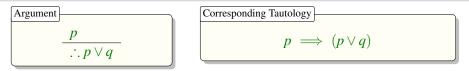
Then the argument is

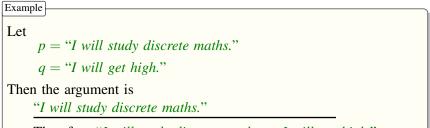
"I will study discrete maths or I will study programming."

"I will not study discrete maths."

Therefore "I will study programming."

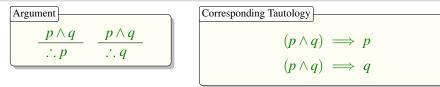
# **Disjunctive Addition**

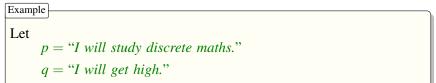




Therefore "I will study discrete maths or I will get high."

# **Conjunctive Simplification**



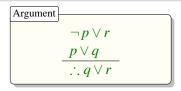


Then the argument is

"I will study discrete maths and I will get high."

Therefore "I will study discrete maths."

# Resolution





$$(\neg p \lor r) \land (p \lor q) \implies (q \lor r)$$

Example Let

p = "I will study discrete maths."

p = "I will study programming."

p = "I will study databases."

Then the argument is

"I will not study discrete maths or I will study programming." "I will study discrete maths or I will study databases."

Therefore "I will study programming or I will study databases."

#### 1. Building Arguments

• Our final topic on logic deals with constructing and validating arguments. We start by giving examples of valid and non-valid arguments and define various concepts that we will need to breakdown an argument.

#### 2. Inference Rules for Propositional Logic

• Breaking down arguments take effort. To simplify things we will collect some standard arguments which we will use, like lego bricks, when working with complicated arguments.

### 3. Using the Rules of Inference to Build Valid Arguments

- In our final topic in logic, we will use the properties of logical operators to construct a valid argument.
- This is a relatively advanced topic and could be ignored until you are comfortable with the earlier topics in logic.

#### 2

#### 6

#### 15

A valid argument is a sequence of statements. Each statement is either a premise or follows from previous statements by rules of inference. The last statement is called conclusion.

#### Example 2

Assuming the following two propositions

p and  $(p \rightarrow q)$ 

show that q is a conclusion.

Method 1

Construct argument using inference rules ...

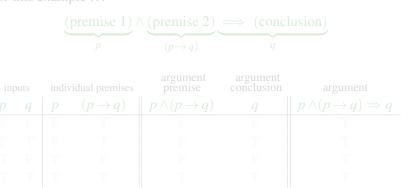
|          | Step                         | Reason                                     |
|----------|------------------------------|--------------------------------------------|
| 1)       | $p \wedge (p \rightarrow q)$ | Premise                                    |
| 2)       | р                            | Conjunctive Simplification from (1)        |
| 3)       | $p \rightarrow q$            | Conjunctive Simplification from (1)        |
| <i>.</i> | q                            | Detachment (Modus Ponens) from (2) and (3) |

### Method 2

#### Construct an expression of the form

 $(\text{premise } 1) \land (\text{premise } 2) \land \dots \land (\text{premise } n) \implies (\text{conclusion})$ 

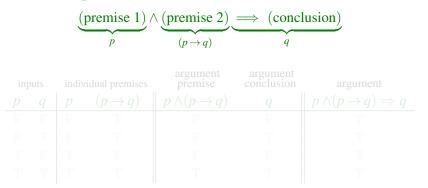
and verify that the expression is a tautology (using a truth table).



### Method 2

Construct an expression of the form

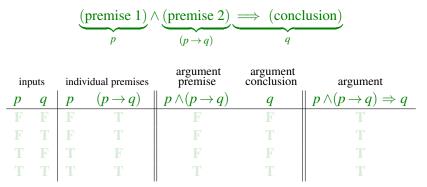
```
(\text{premise } 1) \land (\text{premise } 2) \land \dots \land (\text{premise } n) \implies (\text{conclusion})
```



#### > Method 2 >

Construct an expression of the form

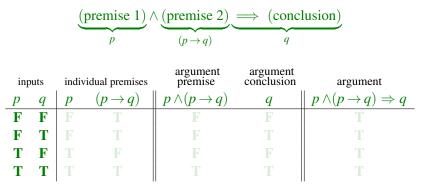
```
(\text{premise } 1) \land (\text{premise } 2) \land \dots \land (\text{premise } n) \implies (\text{conclusion})
```



#### > Method 2>

Construct an expression of the form

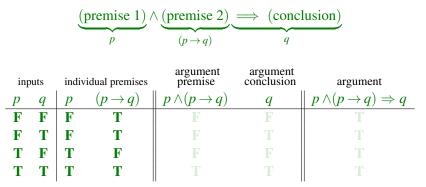
```
(\text{premise } 1) \land (\text{premise } 2) \land \dots \land (\text{premise } n) \implies (\text{conclusion})
```



#### > Method 2>

Construct an expression of the form

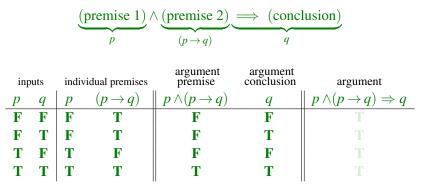
```
(\text{premise } 1) \land (\text{premise } 2) \land \dots \land (\text{premise } n) \implies (\text{conclusion})
```



#### > Method 2>

Construct an expression of the form

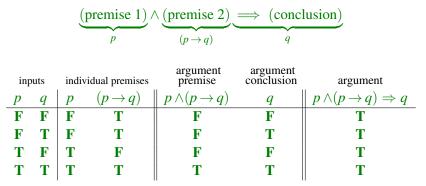
```
(\text{premise } 1) \land (\text{premise } 2) \land \dots \land (\text{premise } n) \implies (\text{conclusion})
```



#### > Method 2>

Construct an expression of the form

```
(\text{premise } 1) \land (\text{premise } 2) \land \dots \land (\text{premise } n) \implies (\text{conclusion})
```



# I

#### Example 3

With these hypotheses:

- It is not sunny this afternoon and it is colder than yesterday."
- We will go swimming only if it is sunny."
- If we do not go swimming, then we will take a canoe trip."
- If we take a canoe trip, then we will be home by sunset."
- Using the inference rules, construct a valid argument for the conclusion:
  - "We will be home by sunset."

General procedure ...

- **STEP 1** Choose propositional variables.
- Translation into propositional logic.

**GTEP 3** Construct the valid argument (OR verify related tautology using truth able.)

# Ι

#### Example 3

With these hypotheses:

- It is not sunny this afternoon and it is colder than yesterday."
- We will go swimming only if it is sunny."
- If we do not go swimming, then we will take a canoe trip."
- If we take a canoe trip, then we will be home by sunset."
- Using the inference rules, construct a valid argument for the conclusion:
  - "We will be home by sunset."

General procedure ...

- **STEP 1** Choose propositional variables.
- **STEP 2**) Translation into propositional logic.

**STEP 3** Construct the valid argument (OR verify related tautology using truth table.)

**STEP 1** *Choose propositional variables.* 

- *s* = "*It is Sunny this afternoon.*"
- c ="It is Colder than yesterday."
- w = "We will go sWimming"
- t = "We will take a canoe Trip."
- h = "We will be Home by sunset."

STEP 2)Translation into propositional logic.Premises ...

- (a) "It is not sunny this afternoon and it is colder than yesterday."  $\neg s \land c$
- We will go swimming only if it is sunny."
- (a) "If we do not go swimming, then we will take a canoe trip."  $\neg w$
- (a) "If we take a canoe trip, then we will be home by sunset."  $t \rightarrow$  and conclusion
  - "We will be home by sunset."

- **STEP 1** *Choose propositional variables.* 
  - s ="It is Sunny this afternoon."
  - c ="It is Colder than yesterday."
  - w = "We will go sWimming"
  - t = "We will take a canoe Trip."
  - h = "We will be Home by sunset."

 STEP 2)
 Translation into propositional logic.

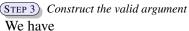
 Premises ...

- **(a)** "It is not sunny this afternoon and it is colder than yesterday."  $\neg s \land c$
- **(a)** "We will go swimming only if it is sunny."  $w \to s$
- **(a)** *"If we do not go swimming, then we will take a canoe trip."*  $\neg w \rightarrow t$
- **(a)** "If we take a canoe trip, then we will be home by sunset."  $t \rightarrow h$

and conclusion

• "We will be home by sunset."

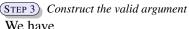
h



(Note the truth table here would have 32 rows)

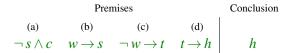


|    | Step              | Reason                                              |
|----|-------------------|-----------------------------------------------------|
| 1) | $\neg s \wedge c$ | Premise (a)                                         |
| 2) |                   | Conjunctive Simplification from (1)                 |
| 3) |                   | Premise (b)                                         |
| 4) |                   | Indirect Reasoning (Modus Tollens) from (2) and (3) |
| 5) |                   | Premise (c)                                         |
| 6) |                   | Detachment (Modus Ponens) from (4) and (5)          |
| 7) |                   | Premise (d)                                         |
|    |                   | Detachment (Modus Ponens) from (6) and (7)          |

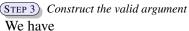


(Note the truth table here would have 32 rows)

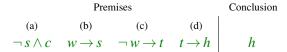
#### We have



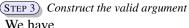
|    | Step              | Reason                                              |
|----|-------------------|-----------------------------------------------------|
| 1) | $\neg s \wedge c$ | Premise (a)                                         |
| 2) |                   | Conjunctive Simplification from (1)                 |
| 3) |                   | Premise (b)                                         |
| 4) |                   | Indirect Reasoning (Modus Tollens) from (2) and (3) |
| 5) |                   | Premise (c)                                         |
| 6) |                   | Detachment (Modus Ponens) from (4) and (5)          |
| 7) |                   | Premise (d)                                         |
|    |                   | Detachment (Modus Ponens) from (6) and (7)          |



(Note the truth table here would have 32 rows)



|    | Step              | Reason                                              |
|----|-------------------|-----------------------------------------------------|
| 1) | $\neg s \wedge c$ | Premise (a)                                         |
| 2) | $\neg s$          | Conjunctive Simplification from (1)                 |
| 3) |                   | Premise (b)                                         |
| 4) |                   | Indirect Reasoning (Modus Tollens) from (2) and (3) |
| 5) |                   | Premise (c)                                         |
| 6) |                   | Detachment (Modus Ponens) from (4) and (5)          |
| 7) |                   | Premise (d)                                         |
|    |                   | Detachment (Modus Ponens) from (6) and (7)          |

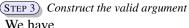


(Note the truth table here would have 32 rows)

We have



|    | Step              | Reason                                              |
|----|-------------------|-----------------------------------------------------|
| 1) | $\neg s \wedge c$ | Premise (a)                                         |
| 2) | $\neg s$          | Conjunctive Simplification from (1)                 |
| 3) | $w \rightarrow s$ | Premise (b)                                         |
| 4) |                   | Indirect Reasoning (Modus Tollens) from (2) and (3) |
| 5) |                   | Premise (c)                                         |
| 6) |                   | Detachment (Modus Ponens) from (4) and (5)          |
| 7) |                   | Premise (d)                                         |
|    |                   | Detachment (Modus Ponens) from (6) and (7)          |

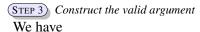


(Note the truth table here would have 32 rows)

We have



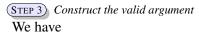
|    | Step              | Reason                                              |
|----|-------------------|-----------------------------------------------------|
| 1) | $\neg s \wedge c$ | Premise (a)                                         |
| 2) | $\neg s$          | Conjunctive Simplification from (1)                 |
| 3) | $w \rightarrow s$ | Premise (b)                                         |
| 4) | $\neg w$          | Indirect Reasoning (Modus Tollens) from (2) and (3) |
| 5) |                   | Premise (c)                                         |
| 6) |                   | Detachment (Modus Ponens) from (4) and (5)          |
| 7) |                   | Premise (d)                                         |
|    |                   | Detachment (Modus Ponens) from (6) and (7)          |



(Note the truth table here would have 32 rows)

Premises Conclusion (a) (b) (c) (d)  $\neg s \land c \quad w \rightarrow s \quad \neg w \rightarrow t \quad t \rightarrow h$ 

|    | Step                   | Reason                                              |
|----|------------------------|-----------------------------------------------------|
| 1) | $\neg s \wedge c$      | Premise (a)                                         |
| 2) | $\neg s$               | Conjunctive Simplification from (1)                 |
| 3) | $w \rightarrow s$      | Premise (b)                                         |
| 4) | $\neg w$               | Indirect Reasoning (Modus Tollens) from (2) and (3) |
| 5) | $\neg w \rightarrow t$ | Premise (c)                                         |
| 6) |                        | Detachment (Modus Ponens) from (4) and (5)          |
| 7) |                        | Premise (d)                                         |
|    |                        | Detachment (Modus Ponens) from (6) and (7)          |



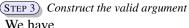
(Note the truth table here would have 32 rows)

Premises Conclusion (a) (b) (c) (d)  $\neg s \land c \quad w \rightarrow s \quad \neg w \rightarrow t \quad t \rightarrow h$ 

#### And our argument is ...

\_

|    | Step                   | Reason                                              |
|----|------------------------|-----------------------------------------------------|
| 1) | $\neg s \wedge c$      | Premise (a)                                         |
| 2) | $\neg s$               | Conjunctive Simplification from (1)                 |
| 3) | $w \rightarrow s$      | Premise (b)                                         |
| 4) | $\neg w$               | Indirect Reasoning (Modus Tollens) from (2) and (3) |
| 5) | $\neg w \rightarrow t$ | Premise (c)                                         |
| 6) | t                      | Detachment (Modus Ponens) from (4) and (5)          |
| 7) |                        | Premise (d)                                         |
|    |                        | Detachment (Modus Ponens) from (6) and (7)          |



(Note the truth table here would have 32 rows)

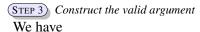
We have



#### And our argument is ...

\_

|    | Step                   | Reason                                              |
|----|------------------------|-----------------------------------------------------|
| 1) | $\neg s \wedge c$      | Premise (a)                                         |
| 2) | $\neg s$               | Conjunctive Simplification from (1)                 |
| 3) | $w \rightarrow s$      | Premise (b)                                         |
| 4) | $\neg W$               | Indirect Reasoning (Modus Tollens) from (2) and (3) |
| 5) | $\neg w \rightarrow t$ | Premise (c)                                         |
| 6) | t                      | Detachment (Modus Ponens) from (4) and (5)          |
| 7) | $t \rightarrow h$      | Premise (d)                                         |
|    | h                      | Detachment (Modus Ponens) from (6) and (7)          |



(Note the truth table here would have 32 rows)

Premises Conclusion (a) (b) (c) (d)  $\neg s \land c \quad w \rightarrow s \quad \neg w \rightarrow t \quad t \rightarrow h$ 

#### And our argument is ...

\_

|          | Step                   | Reason                                              |
|----------|------------------------|-----------------------------------------------------|
| 1)       | $\neg s \wedge c$      | Premise (a)                                         |
| 2)       | $\neg s$               | Conjunctive Simplification from (1)                 |
| 3)       | $w \rightarrow s$      | Premise (b)                                         |
| 4)       | $\neg W$               | Indirect Reasoning (Modus Tollens) from (2) and (3) |
| 5)       | $\neg w \rightarrow t$ | Premise (c)                                         |
| 6)       | t                      | Detachment (Modus Ponens) from (4) and (5)          |
| 7)       | $t \rightarrow h$      | Premise (d)                                         |
| <i>.</i> | h                      | Detachment (Modus Ponens) from (6) and (7)          |

Using the Rules of Inference to Build Valid Arguments

## That was a bit painful ... let Python do the work ...

```
Premises
                                                                                 Conclusion
O
      1 # individual premises
                                         (a) (b) (c) (d)

\neg s \land c \quad w \to s \quad \neg w \to t \quad t \to h
      2 p1 = "not s and c"
                                                                                   h
      3 p2 = "not w or s"
      4 p3 = "w or t"
      5 p4 = "not t or h"
      6
      7 # construct argument premise - each premise is inside ( )
      8 p = f''({p1}) and ({p2}) and ({p3}) and ({p4})''
      9
     10 # argument conclusion
     11 c = "h"
     12
     13 # output argument premise and conclusion
     14 print(f"argument premise: {p}")
     15 print(f"argument conclusion: {c}")
     16
     17 # build expression for testing (is it a tautology?)
     18 argument = f''(not ({p})) or ({c})''
     19
     20 # generate truth table - show premises, conclusion and argument
     21 TruthTable([p1,p2,p3,p4, c, argument])
```

Using the Rules of Inference to Build Valid Arguments

### That was a bit painful ... let Python do the work ...

argument premise: (not s and c) and (not w or s) and (w or t) and (not t or h) argument conclusion: h

| с     | h     | s     | t     | w     | not s and c | not w or s | w or t | not t or h | h     | (not ((not s and c) and (not w or s) and (w or t) and (not t or h))) or (h) |
|-------|-------|-------|-------|-------|-------------|------------|--------|------------|-------|-----------------------------------------------------------------------------|
| False | False | False | False | False | False       | True       | False  | True       | False | e True                                                                      |
| False | False | False | False | True  | False       | False      | True   | True       | False | e True                                                                      |
| False | False | False | True  | False | False       | True       | True   | False      | False | e True                                                                      |
| False | False | False | True  | True  | False       | False      | True   | False      | False | e True                                                                      |
| False | False | True  | False | False | False       | True       | False  | True       | False | e True                                                                      |
| False | False | True  | False | True  | False       | True       | True   | True       | False | e True                                                                      |
| False | False | True  | True  | False | False       | True       | True   | False      | False | e True                                                                      |
| False | False | True  | True  | True  | False       | True       | True   | False      | False | e True                                                                      |
| False | True  | False | False | False | False       | True       | False  | True       | True  | True                                                                        |
| False | True  | False | False | True  | False       | False      | True   | True       | True  | True                                                                        |
| False | True  | False | True  | False | False       | True       | True   | True       | True  | True                                                                        |
| False | True  | False | True  | True  | False       | False      | True   | True       | True  | True                                                                        |
| False | True  | True  | False | False | False       | True       | False  | True       | True  | True                                                                        |
| False | True  | True  | False | True  | False       | True       | True   | True       | True  | True                                                                        |
| False | True  | True  | True  | False | False       | True       | True   |            |       | True                                                                        |
| False |       |       |       |       |             | True       | True   | True       | True  | True                                                                        |
| True  |       |       |       |       |             | True       | False  |            |       | e True                                                                      |
| True  | False | False | False | True  | True        | False      | True   | True       | False | e True                                                                      |
| True  | False | False | True  | False | True        | True       | True   | False      | False | e True                                                                      |
| True  | False | False | True  | True  | True        | False      | True   |            |       | e True                                                                      |
| True  | False | True  | False | False | False       | True       | False  | True       | False | e True                                                                      |
| True  | False | True  | False | True  | False       | True       | True   | True       | False | e True                                                                      |
| True  | False | True  | True  | False | False       | True       | True   | False      | False | e True                                                                      |
| True  | False | True  | True  | True  | False       | True       | True   | False      | False | e True                                                                      |
| True  | True  | False | False | False | True        | True       | False  | True       | True  | True                                                                        |
| True  |       |       |       |       |             | False      | True   |            |       | True                                                                        |
| True  |       |       |       |       |             | True       | True   | True       | True  | True                                                                        |
| True  | True  | False | True  | True  | True        | False      |        |            | True  | True                                                                        |
| True  |       |       |       |       |             | True       | False  |            |       | True                                                                        |
| True  |       |       |       |       |             | True       | True   |            |       | True                                                                        |
| True  |       |       |       |       |             | True       |        |            |       | True                                                                        |
| True  | True  | True  | True  | True  | False       | True       | True   | True       | True  | True                                                                        |

Π

Using the Rules of Inference to Build Valid Arguments

### That was a bit painful ... let Python do the work ...

argument premise: (not s and c) and (not w or s) and (w or t) and (not t or h) argument conclusion: h

| argun |       | conci | us10  |       |       |                |        |       |       |      |        |                                                               |  |
|-------|-------|-------|-------|-------|-------|----------------|--------|-------|-------|------|--------|---------------------------------------------------------------|--|
| с     | h     | S     | t     |       |       | d c not w or s | w or t |       |       |      |        | nd c) and (not w or s) and (w or t) and (not t or h))) or (h) |  |
| False |       |       |       |       |       | True           | False  |       | False |      | \<br>\ | <b>\</b>                                                      |  |
| False | False | False | False | True  | False | False          | True   | True  | False | True | )      |                                                               |  |
| False | False | False | True  | False | False | True           | True   | False | False | True | ,      |                                                               |  |
| False | False | False | True  | True  | False | False          | True   | False | False | True |        |                                                               |  |
| False | False | True  | False | False | False | True           | False  | True  | False | True |        |                                                               |  |
| False | False | True  | False | True  | False | True           | True   | True  | False | True |        |                                                               |  |
| False | False | True  | True  | False | False | True           | True   | False | False | True | ,      |                                                               |  |
| False | False | True  | True  | True  | False | True           | True   | False | False | True | ,      |                                                               |  |
| False | True  | False | False | False | False | True           | False  | True  | True  | True | ,      |                                                               |  |
| False | True  | False | False | True  | False | False          | True   | True  | True  | True | ,      |                                                               |  |
| False | True  | False | True  | False | False | True           | True   | True  | True  | True | ,      |                                                               |  |
| False | True  | False | True  | True  | False | False          | True   | True  | True  | True | ,      |                                                               |  |
| False |       |       |       |       |       | True           | False  | True  | True  | True | ,      |                                                               |  |
| False | True  | True  | False | True  | False | True           | True   | True  | True  | True | ,      |                                                               |  |
| False |       |       |       |       |       | True           | True   | True  | True  | True |        | All rows are True so                                          |  |
| False | True  | True  | True  | True  | False | True           | True   | True  | True  | True |        | All lows are flue so                                          |  |
| True  | False | False | False | False | True  | True           | False  | True  | False | True | ,      | ( we have a tautology                                         |  |
| True  | False | False | False | True  | True  | False          | True   | True  | False | True |        |                                                               |  |
| True  | False | False | True  | False | True  | True           | True   | False | False | True | ,      |                                                               |  |
| True  | False | False | True  | True  | True  | False          | True   | False | False | True |        |                                                               |  |
| True  |       |       |       |       |       | True           | False  |       | False |      |        |                                                               |  |
| True  | False | True  | False | True  | False | True           | True   | True  | False | True | ,      |                                                               |  |
| True  |       |       |       |       |       | True           | True   |       | False |      |        |                                                               |  |
| True  | False | True  | True  | True  | False | True           |        |       | False | True |        |                                                               |  |
| True  | True  | False | False | False | True  | True           | False  | True  | True  | True |        |                                                               |  |
| True  |       |       |       |       |       | False          | True   | True  | True  | True |        |                                                               |  |
| True  |       |       |       |       |       | True           |        | True  | True  | True |        |                                                               |  |
| True  |       |       |       |       |       | False          | True   | True  | True  | True |        |                                                               |  |
| True  |       |       |       |       |       | True           | False  |       |       | True |        |                                                               |  |
| True  |       |       |       |       |       | True           | True   |       | True  | True |        |                                                               |  |
| True  |       |       |       |       |       | True           |        |       |       | True |        | /                                                             |  |
| True  | True  | True  | True  | True  | False | True           | True   | True  | True  | True |        |                                                               |  |

23 of 23

Π