Discrete Mathematics — Tutorial Sheet 01 — Logic BSc (H) in App Comp, Ent Sys, Comp Foren, and the IoT

Translating between English and symbols

Question 1

Given propositions p = "Jack passed math", and q = "Jill passed math".

- (a) Translate "Jack and Jill both passed math" into symbols.
- (b) Translate "If Jack passed math, then Jill did not" into symbols.
- (c) Translate " $p \lor q$ " into English.
- (d) Translate " $\neg (p \land q) \rightarrow q$ " into English.
- (e) Suppose you know that if Jack passed math, then so did Jill. What can you conclude if you know that:
 - i) Jill passed math?
 - ii) Jill did not pass math?

Question 2

Consider the statement "If Oscar eats Chinese food, then he drinks milk".

- (a) Write the converse of the statement.
- (b) Write the contrapositive of the statement.
- (c) Is it possible for the contrapositive to be false? If it was, what would that tell you?
- (d) Suppose the original statement is true, and that Oscar drinks milk. Can you conclude anything (about his eating Chinese food)? Explain.
- (e) Suppose the original statement is true, and that Oscar does not drink milk. Can you conclude anything (about his eating Chinese food)? Explain.

Question 3

Let d = "I like discrete mathematics", c = "I will pass this module" and s = "I will do my assignments". Express each of the following propositions in symbolic form:

- (a) I like discrete mathematics and I will pass this module.
- (b) I will do my assignments or I will not pass this module.
- (c) It is not true that I like discrete mathematics and I will do my assignments.

(d) I will not do my assignment and I will not pass this module.

Truth Tables

Question 4

Construct the truth tables of each of the following and classify them as satisfiable, tautology, or a contradiction.

(a) $\neg (p \land q)$ (b) $p \land (\neg q)$ (c) $(p \land q) \land r$ (d) $(p \land q) \lor (q \land r) \lor (r \land p)$ (e) $\neg p \lor \neg q$ (f) $p \lor q \lor r \lor s$

Question 5

Construct a truth table to determine whether $(\neg p \lor q) \land (q \to (\neg r \land \neg p)) \land (p \lor r)$ is satisfiable.

Question 6

Use the truth tables method to determine whether $p \to (q \wedge \neg \, q)$ and $\neg \, p$ are logically equivalent.

Application to logic circuits

Question 7

(a) Construct the logical expression for the given logical circuit.

(b) Construct the logical expression for the given logical circuit.

 p

 q

(c) Check if the two logical expressions are equivalent, and hence comment on whether the above two circuits are equivalent.

Puzzles >

Question 8

Three boxes are presented to you. One contains gold, the other two are empty. Each box has imprinted on it a clue as to its contents; the clues are:

Box 1 "The gold is not here"

Box 2 "The gold is not here"

Box 3 "The gold is in Box 2"

Only one message is true; the other two are false. Which box has the gold?

Question 9

Translate into symbols each of the following. Use E(x) for "x is even" and O(x) for "x is odd."

- (a) No number is both even and odd.
- (b) One more than any even number is an odd number.
- (c) There is prime number that is even.
- (d) Between any two numbers there is a third number.
- (e) There is no number between a number and one more than that number.

Question 10

Translate into English each of the following

(a) $\forall x \ [E(x) \to E(x+2)].$ (b) $\forall x \exists y \ [\sin(x) = y].$ (c) $\forall y \exists x \ [\sin(x) = y].$ (d) $\forall x \forall y \ [x^3 = y^3 \to x = y].$

Question 11

Over the real numbers, use quantifiers to say that the equation a + x = b has a solution for all values of a and b.

(Hint: You will need three qualifiers.)

Question 12

For each of the statements below, give a domain of discourse for which the statement is true, and a domain for which the statement is false.

- (a) $\forall x \exists y \ [y^2 = x].$
- (b) $\forall x \forall y \exists z \ [x < z < y].$
- (c) $\exists x \forall y \forall z \ [(y < z) \Rightarrow (y \le x \le z)]$

Question 13

Suppose P(x) is some predicate for which the statement $\forall x [P(x)]$ is true. Is it also the case that $\exists x [P(x)]$ is true? In other words, is the statement $\forall x [P(x)] \rightarrow \exists x [P(x)]$ always true? Is the converse always true? Explain.

Question 14

What about my three trolls?

Question 15

Which of the following arguments are valid? Hint: Construct the corresponding expression and check that is a tautology.

- (a) "If it is raining, it is not cold" "If is not raining, John is not wearing a coat It is cold" ∴ "John is not wearing a coat"
- (b) "If it is raining, it is not cold" "If is not raining, John is not wearing a coat" "It is cold" ∴ "John is not wearing a coat"
- (c) "If it is snowing, it is cold or it is wet"
 "If it is cold, John is wearing a coat"
 "It is snowing"

.:. "John is wearing a coat"