Chapter Summary — Logic

This document is a very rough summary of the the concepts and tasks that we covered in this chapter. The plan is to write a similar document at the end of each chapter, but time will tell (in fact it would be significantly better if you do this.). I hope this document will be use to you when revising the chapter. However, please do not think that this comes with any guarantee of completeness — the probability of me overlooking something is large. Please ask if you think I have omitted anything. — kmurphy, 29 Sept, 2018

Section A: Concepts

\Box Propositions/statements

- $\hfill\square$ Atomic vs compound
- \Box Fundmental logical connectives AND, OR, NOT
 - \Box Definition as a rule, definition as a truth table, logic gate, and properties
 - $\hfill\square$ Precedence order
- \Box Conditions logical connectives IFTHEN.
 - $\hfill\square$ Definition as a rule, definition as a truth table
 - \Box Representation using fundamental logical connectives
 - $\hfill\square$ Implication and contrapositive vs converse and contrapositive of a converse

\Box Bi-conditional logical connective — IFANDONLYIF.

 \Box Logical equivalence

□ Truth tables

 \Box Satisfiability, tautologies, and contradictions

□ Existence and universal qualifiers

- \Box Predicate logic Logic expressions involving qualifiers
 - \Box Domain of discourse
- \Box Standard implications (see formula sheet)

\Box Arguments

 $\hfill\square$ Valid arguments, premises and conclusion.

Section B: Tasks

\Box Translating English \leftrightarrow Proposition/Predicate Logic

- $\hfill\square$ Translate an English sentence into/from an expression involving atomic propositions and logical connectives.
- \Box Translate an English sentence involving existence and/or universal qualifiers into/from a logic expression involving qualifiers.

\Box Logic Circuits

- \Box Construct a logical expression to represent a logic circuit.
- $\Box\,$ Draw a circuit to represent a proposition
- \Box Determine whether two circuits are equivalent via their associated logical expressions.

\Box Truth Tables

 \Box Construct a truth table of an expression.

- \Box Determine whither expression is satisfiable, a tautology or a contradiction.
- \Box Test whether an argument is valid.
- \Box Test whether two expression are logically equivalent.

\Box Predicate Logic — Qualifiers

- \Box Negate a proposition involving qualifiers.
- \Box Prove/disprove

\Box Arguments

- \Box Prove valid by constructing related expression and check for tautology.
- \Box Prove using laws of inference.

Section C: Stuff not Covered (Yet)

You are probably asking "Why is this section here?". I have a number of reasons: 1) To highlight possible differences between this iteration of Discrete Mathematics and previous years. 2) To show those or you who are interested in more, where to go next. 3) To remind me of what I should do next, if miracles of miracles, we end up in week 11/12 with nothing to do but tell maths jokes ...

- \Box Other logical connectives.
 - \Box NAND, NOR, XOR
 - \Box Universal logical connectives.
- □ Properties of logical connectives (cover in more detail)
- \Box Conversion to conjunctive normal form (CNF) and disjunctive normal form (DNF).
- □ Constructing Argument involving predicate logic (qualifiers)