Discrete Mathematics — Tutorial Sheet 03 — Sets BSc (H) in App Comp, Ent Sys, Comp Foren, and the IoT

Set Operations

Question 1

Let $A = \{0, 2, 3\}, B = \{2, 3\}, C = \{1, 5, 9\}, D = \{3, 2\}$, and $E = \{2, 3, 2\}$. and let the universal set be $U = \{0, 1, 2, ..., 9\}$.

(a) Determine:

(i)	$A \cap B$	(iv) $A \cup C$	(vii) \overline{A}	(x)	$A\oplus B$
(ii)	$A\cup B$	(v) $A \setminus B$	(viii) \overline{C}		
(iii)	$B\cup A$	(vi) $B \setminus A$	(ix) $A \cap C$		

(b) Determine which of the following are true. Give reasons for your decisions

(i)	A = B	(iv) $E = D$	(vii) $A \setminus B = B \setminus A$
(ii)	B = C	$(\mathbf{v}) A \cap B = B \cap A$	
(iii)	B = D	(vi) $A \cup B = B \cup A$	(viii) $A \oplus B = B \oplus A$

Question 2

Let $U = \{1, 2, 3, ..., 9\}$. Give examples of sets A, B, and C for which:

(a)	$A \cap (B \cap C) = (A \cap B) \cap C$	(d)	$A \cup A^c = U$
(b)	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	(e)	$A\subseteq A\cup B$
(c)	$(A\cup B)^c=A^c\cap B^c$	(f)	$A\cap B\subseteq A$

Note: I used alternative notation here for complement: $A^c = \overline{A}$. This did not come to light until after the first tutorial, so rather than correcting the question, I have included this note.

Question 3

Draw a Venn diagram to represent each of the following:

(a)	$A \cup \bar{B}$	(d)	$(A \cap B) \cup C$
(b)	$(A \cup B)$	(e)	$\bar{A}\cap B\cap \bar{C}$
(c)	$A \cap (B \cup C)$	(f)	$(A \cup B) \setminus C$

Question 4

Construct an example of sets A and B such that $A \cap B = \{3, 5\}$ and $A \cup B = \{2, 3, 5, 7, 8\}$.

Question 5

Construct an example of sets A and B such that $A \subseteq B$ and $A \in B$.

Indirect Questions

This questions are based on set relationships and set operations also but may require a little more thought.

Question 6

Let $U = \{1, 2, 3, ..., 9\}$. Give examples to illustrate the following facts:

- (a) If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
- (b) There are sets A and B such that $A \setminus B \neq B \setminus A$
- (c) If $U = A \cup B$ and $A \cap B = \emptyset$, it always follows that $A = U \setminus B$.
- (d) $A \oplus (B \cap C) = (A \oplus B) \cap (A \oplus C)$

Question 7

Suppose that U is an infinite universal set, and A and B are infinite subsets of U. Answer the following questions with a brief explanation.

- (a) Must \overline{A} be finite?
- (b) Must $A \cup B$ infinite?
- (c) Must $A \cap B$ be infinite?