

Outline

- Function Operations
- Inverse of a Function existence conditions and derivation

Enumeration

Outline

1. Definition of a Function

1.1. Definition Based on Relations1.2. Function Notation1.3. An Aside: Interval Notation	3 11 13
2. Function Properties2.1. Surjective (Onto)2.2. Injective (One-to-One)2.3. Bijective (Injective and Surjective)	17 19 21 23
3. Operations3.1. Function Equality3.2. Add/Subtract/Multiply/Divide3.3. Function Composition	25 28 29 31

Functions — Where are we?

At this point we have:

- defined what a function is (any process that generates exactly one output for each input)
- covered fundamental concepts (source, target, domain, image),
- covered properties (injective, surjective and bijective).

we want to discuss

- function operations constructing new functions by adding/multiplying functions* or by applying one function after another function.
- function inverse finding function pairs that have the property that applying one after the other results in the original input.
- yet another graphical representation of functions using 2D Cartesian graphs to represent functions.
- a library of useful functions in computing.

^{*}These are a bigger deal in calculus than in discrete mathematics

Before we start combining functions, I want to make sure that you are happy with evaluating a function. †

Example 1

Given the function $f: x \mapsto 2x^2 - x + 3$, evaluate

$$\bullet$$
 $f(-a)$

2
$$f(2a)$$

4
$$f(x+5)$$

$$f(-a) = 2[-a]^2 - [-a] + 3 = 2a^2 + a + 3$$

$$f(2a) = 2[2a]^2 - [2a] + 3 = 8a^2 - 2a + 3$$

$$f(a+h) = 2[a+h]^{2} - [a+h] + 3 = 2a^{2} + 4ah + 2h^{2} - a - h + 3$$

$$f(x+5)$$

$$f(x+5) = 2[x+5]^2 - [x+5] + 3 = 2x^2 + 10x - x + 48$$

[†]Simply use an extra set of brackets to ensure correct order of operations.

Before we start combining functions, I want to make sure that you are happy with evaluating a function. †

Example 1

Given the function $f: x \mapsto 2x^2 - x + 3$, evaluate

$$\bullet$$
 $f(-a)$

2 f(2a)

3 f(a+h)

4 f(x+5)

$$f(-a) = 2[-a]^2 - [-a] + 3 = 2a^2 + a + 3$$

$$\circ$$
 $f(2a)$

$$f(2a) = 2[2a]^2 - [2a] + 3 = 8a^2 - 2a + 3$$

$$f(a+h) = 2[a+h]^2 - [a+h] + 3 = 2a^2 + 4ah + 2h^2 - a - h + 3$$

$$f(x+5)$$

$$f(x+5) = 2[x+5]^2 - [x+5] + 3 = 2x^2 + 10x - x + 48$$

[†]Simply use an extra set of brackets to ensure correct order of operations.

Before we start combining functions, I want to make sure that you are happy with evaluating a function. †

Example 1

Given the function $f: x \mapsto 2x^2 - x + 3$, evaluate

$$\mathbf{0} f(-a)$$

2
$$f(2a)$$

3
$$f(a+h)$$

4
$$f(x+5)$$

$$f(-a) = 2[-a]^2 - [-a] + 3 = 2a^2 + a + 3$$

$$\circ$$
 $f(2a)$

$$f(2a) = 2[2a]^2 - [2a] + 3 = 8a^2 - 2a + 3$$

$$f(a+h) = 2[a+h]^2 - [a+h] + 3 = 2a^2 + 4ah + 2h^2 - a - h + 3$$

a
$$f(x+5)$$

$$f(x+5) = 2[x+5]^2 - [x+5] + 3 = 2x^2 + 10x - x + 48$$

[†]Simply use an extra set of brackets to ensure correct order of operations.

Before we start combining functions, I want to make sure that you are happy with evaluating a function. †

Example 1

Given the function $f: x \mapsto 2x^2 - x + 3$, evaluate

1
$$f(-a)$$

2
$$f(2a)$$

4
$$f(x+5)$$

$$f(-a) = 2[-a]^2 - [-a] + 3 = 2a^2 + a + 3$$

$$\circ$$
 $f(2a)$

$$f(2a) = 2[2a]^2 - [2a] + 3 = 8a^2 - 2a + 3$$

$$f(a+h) = 2[a+h]^2 - [a+h] + 3 = 2a^2 + 4ah + 2h^2 - a - h + 3$$

•
$$f(x+5)$$

$$f(x+5) = 2[x+5]^2 - [x+5] + 3 = 2x^2 + 10x - x + 48$$

[†]Simply use an extra set of brackets to ensure correct order of operations.

Function Equality

Two functions are equal if they have the same domain and the same rule/mapping.

Definition 2 (Function Equality)

Let f and g be two functions. Then

$$f = g$$
 \iff $\underbrace{\operatorname{Dom}(f) = \operatorname{Dom}(g)}_{\text{same domain}} \land \underbrace{f(x) = g(x) \quad \forall x \in \operatorname{Dom}(f)}_{\text{same rule}}$

Two functions that have different domains cannot be equal. For example,

$$f: \mathbb{Z} \to \mathbb{Z}: x \mapsto x^2$$
 and $g: \mathbb{R} \to \mathbb{R}: x \mapsto x^2$

are **not** equal even though the rule that defines them is the same

 However, it is not uncommon for two functions to be equal even though they are defined differently. For example

$$h: \{-1, 0, 1, 2\} \to \{0, 1, 2\} : x \mapsto |x|$$

and

$$k: \{-1,0,1,2\} \to \{0,1,2\}: x \mapsto -\frac{x^3}{3} + x^2 + \frac{x}{3}$$

appear to be very different functions. However, they are equal because, domains are equal and h(x) = k(x) for all $x \in \{-1, 0, 1, 2\}$.

Two functions are equal if they have the same domain and the same rule/mapping.

Definition 2 (Function Equality)

Let f and g be two functions. Then

$$f = g$$
 \iff $\underbrace{\operatorname{Dom}(f) = \operatorname{Dom}(g)}_{\text{same domain}} \land \underbrace{f(x) = g(x)}_{\text{same rule}} \forall x \in \operatorname{Dom}(f)$

• Two functions that have different domains cannot be equal. For example,

$$f: \mathbb{Z} \to \mathbb{Z}: x \mapsto x^2$$
 and $g: \mathbb{R} \to \mathbb{R}: x \mapsto x^2$

are **not** equal even though the rule that defines them is the same.

 However, it is not uncommon for two functions to be equal even though they are defined differently. For example

$$h: \{-1, 0, 1, 2\} \to \{0, 1, 2\} : x \mapsto |x|$$

and

$$k: \{-1,0,1,2\} \to \{0,1,2\}: x \mapsto -\frac{x^3}{3} + x^2 + \frac{x}{3}$$

appear to be very different functions. However, they are equal because, domains are equal and h(x) = k(x) for all $x \in \{-1, 0, 1, 2\}$.

Function Equality

Two functions are equal if they have the same domain and the same rule/mapping.

Definition 2 (Function Equality)

Let f and g be two functions. Then

$$f = g$$
 \iff $\underbrace{\mathrm{Dom}(f) = \mathrm{Dom}(g)}_{\text{same domain}} \land \underbrace{f(x) = g(x) \quad \forall x \in \mathrm{Dom}(f)}_{\text{same rule}}$

• Two functions that have different domains cannot be equal. For example,

$$f: \mathbb{Z} \to \mathbb{Z}: x \mapsto x^2$$
 and $g: \mathbb{R} \to \mathbb{R}: x \mapsto x^2$

are **not** equal even though the rule that defines them is the same.

• However, it is not uncommon for two functions to be equal even though they are defined differently. For example

$$h: \{-1,0,1,2\} \to \{0,1,2\} : x \mapsto |x|$$

and

$$k: \{-1,0,1,2\} \to \{0,1,2\}: x \mapsto -\frac{x^3}{3} + x^2 + \frac{x}{3}$$

appear to be very different functions. However, they are equal because, domains are equal and h(x) = k(x) for all $x \in \{-1, 0, 1, 2\}$.

Function Addition/Subtraction/Multiplication/Division

I'm throwing these four operations together in the hope that you see that this is just notational convenience[‡]. You will cover these more formally in your *Calculus* module.

Definition 3

Given two functions $f: x \mapsto f(x)$ and $g: x \mapsto g(x)$ then (informally) the

sum function is

$$(f+g): x \mapsto f(x) + g(x)$$

difference function is

$$(f-g): x \mapsto f(x) - g(x)$$

• product function is

$$(fg): x \mapsto f(x)g(x)$$

• quotient function is

$$(f/g): x \mapsto f(x)/g(x)$$
 $g(x) \neq 0$

^{*}What programmers call "syntax sugar".

Example 4

- (f+g)(2) (fg)(2)

- \bullet $\left(\frac{f}{g}\right)(2)$ \bullet $\left(\frac{g}{f}\right)(2)$ \bullet $\left(\frac{g}{f}\right)(1)$

$$(f+g)(2) = f(2) + g(2) = [0] + [-2] = -2$$

$$(fg)(2) = f(2)g(2) = [0] \cdot [-2] = 0$$

Example 4

- **1** (f+g)(2) **2** (fg)(2)

- $\bullet \left(\frac{f}{g}\right)(2) \qquad \bullet \left(\frac{g}{f}\right)(2) \qquad \bullet \left(\frac{g}{f}\right)(1)$

$$(f+g)(2) = f(2) + g(2) = [0] + [-2] = -2$$

$$(fg)(2) = f(2)g(2) = [0] \cdot [-2] = 0$$

Example 4

$$(f+g)(2) = f(2) + g(2) = [0] + [-2] = -2$$

$$(fg)(2) = f(2)g(2) = [0] \cdot [-2] = 0$$

Example 4

$$(f+g)(2) = f(2) + g(2) = [0] + [-2] = -2$$

$$(fg)(2) = f(2)g(2) = [0] \cdot [-2] = 0$$

Example 4

$$(f+g)(2) = f(2) + g(2) = [0] + [-2] = -2$$

$$(fg)(2) = f(2)g(2) = [0] \cdot [-2] = 0$$

Definition 5 (Function Composition)

Let $f:A\to B$ and $g:B\to C$. Then the composition of f followed by g, written $g\circ f$ is a function from A into C defined by

$$(g \circ f)(x) = g(f(x))$$

Definition 5 (Function Composition)

Let $f:A\to B$ and $g:B\to C$. Then the composition of f followed by g, written $g\circ f$ is a function from A into C defined by

$$(g \circ f)(x) = g(f(x))$$

which is read as "g of f of x" or "g after f of x"

 $\begin{array}{c}
A \\
1 \\
2 \\
3
\end{array}$

Definition 5 (Function Composition)

Let $f: A \to B$ and $g: B \to C$. Then the composition of f followed by g, written $g \circ f$ is a function from A into C defined by

$$(g \circ f)(x) = g(f(x))$$

$$f = \{(1, a), (2, a), (3, b)\}$$
 $g = \{(a, B), (b, C), (c, A)\}$

Definition 5 (Function Composition)

Let $f: A \to B$ and $g: B \to C$. Then the composition of f followed by g, written $g \circ f$ is a function from A into C defined by

$$(g \circ f)(x) = g(f(x))$$

$$f = \{(1, a), (2, a), (3, b)\}$$

$$g = \{(a, B), (b, C), (c, A)\}$$

Definition 5 (Function Composition)

Let $f:A\to B$ and $g:B\to C$. Then the composition of f followed by g, written $g\circ f$ is a function from A into C defined by

$$(g \circ f)(x) = g(f(x))$$

Example 6 (Function composition using formulae)

Consider functions $f: \mathbb{R} \to \mathbb{R}: x \mapsto x^3$ and $g: \mathbb{R} \to \mathbb{R}: x \mapsto 3x + 1$. Then, construct functions $g \circ f$ and $f \circ g$.

$$g \circ f > g \circ f$$
and since $g(f(x)) = g(x^3) = 3[x^3] + 1$ we have
$$g \circ f : \mathbb{R} \to \mathbb{R} : x \mapsto 3x^3 + 1$$

$$f \circ g : \mathbb{R} \to \mathbb{R} : x \mapsto f(g(x))$$
 and since $f(g(x)) = f(3x+1) = \begin{bmatrix} 3x+1 \end{bmatrix}^3$ we have
$$f \circ g : \mathbb{R} \to \mathbb{R} : x \mapsto 27x^3 + 27x^2 + 9x + 3x \mapsto 27x^3 + 27x^2 + 2$$

• Note that, in general, $f \circ g \neq g \circ f$.

Example 6 (Function composition using formulae)

Consider functions $f: \mathbb{R} \to \mathbb{R}: x \mapsto x^3$ and $g: \mathbb{R} \to \mathbb{R}: x \mapsto 3x + 1$. Then, construct functions $g \circ f$ and $f \circ g$.

$$g \circ f : \mathbb{R} \to \mathbb{R} : x \mapsto g(f(x))$$
and since $g(f(x)) = g(x^3) = 3\left[\frac{x^3}{x^3}\right] + 1$ we have
$$g \circ f : \mathbb{R} \to \mathbb{R} : x \mapsto 3x^3 + 1$$

$$f \circ g : \mathbb{R} \to \mathbb{R} : x \mapsto f(g(x))$$
 and since $f(g(x)) = f(3x+1) = \begin{bmatrix} 3x+1 \end{bmatrix}^3$ we have
$$f \circ g : \mathbb{R} \to \mathbb{R} : x \mapsto 27x^3 + 27x^2 + 9x + 3x \mapsto 27x^3 + 27x^2 + 2$$

• Note that, in general, $f \circ g \neq g \circ f$.

Example 6 (Function composition using formulae)

Consider functions $f : \mathbb{R} \to \mathbb{R} : x \mapsto x^3$ and $g : \mathbb{R} \to \mathbb{R} : x \mapsto 3x + 1$. Then, construct functions $g \circ f$ and $f \circ g$.

$$g \circ f : \mathbb{R} \to \mathbb{R} : x \mapsto g(f(x))$$
 and since $g(f(x)) = g(x^3) = 3\left[\frac{x^3}{x^3}\right] + 1$ we have
$$g \circ f : \mathbb{R} \to \mathbb{R} : x \mapsto 3x^3 + 1$$

$$f \circ g : \mathbb{R} \to \mathbb{R} : x \mapsto f(g(x))$$
 and since $f(g(x)) = f(3x+1) = \begin{bmatrix} 3x+1 \end{bmatrix}^3$ we have
$$f \circ g : \mathbb{R} \to \mathbb{R} : x \mapsto 27x^3 + 27x^2 + 9x + 1$$

• Note that, in general, $f \circ g \neq g \circ f$.

Properties of Function Composition

While the previous example shows that we cannot change the order of functions in a function composition we are free to change the grouping ...

Theorem 7 (Function composition is associative)

Given three function, $f: A \rightarrow B$, $g: B \rightarrow C$, and $h: C \rightarrow D$, then

$$h\circ (g\circ f)=(h\circ g)\circ f$$

• This result means that no matter how the functions in the expression $h \circ g \circ f$ are grouped, the final image of any element of $x \in A$ is h(g(f(x)))

Using function composition we can define repeated application of functions $^\S\dots$

Definition 8 ("Powers" of Functions)

Let $f: A \to A$.

- $f^1 = f$; that is, $f^1(a) = f(a)$, for $a \in A$.
- For $n \ge 1$, $f^{n+1} = f \circ f^n$; that is, $f^{n+1}(a) = f(f^n(a))$ for $a \in A$.

[§] Take care of notation here: $f^2(x) \neq (f(x))^2$, etc.

Properties of Function Composition

While the previous example shows that we cannot change the order of functions in a function composition we are free to change the grouping ...

Theorem 7 (Function composition is associative)

Given three function, $f: A \rightarrow B$, $g: B \rightarrow C$, and $h: C \rightarrow D$, then

$$h\circ (g\circ f)=(h\circ g)\circ f$$

• This result means that no matter how the functions in the expression $h \circ g \circ f$ are grouped, the final image of any element of $x \in A$ is h(g(f(x)))

Using function composition we can define repeated application of functions§ ...

Definition 8 ("Powers" of Functions)

Let $f: A \to A$.

- $f^1 = f$; that is, $f^1(a) = f(a)$, for $a \in A$.
- For $n \ge 1$, $f^{n+1} = f \circ f^n$; that is, $f^{n+1}(a) = f(f^n(a))$ for $a \in A$.

[§] Take care of notation here: $f^2(x) \neq (f(x))^2$, etc.

Outline

1.1. Definition Based on Relations1.2. Function Notation1.3. An Aside: Interval Notation	11 13
2. Function Properties2.1. Surjective (Onto)2.2. Injective (One-to-One)2.3. Bijective (Injective and Surjective)	17 19 21 23
3. Operations3.1. Function Equality3.2. Add/Subtract/Multiply/Divide3.3. Function Composition	25 28 29 31
4. Function Inverse	34

Definition 9 (Inverse of a Function)

Let $f: A \to B$. If there exists a function $g: B \to A$ such that

$$(g \circ f)(x) = x \quad \forall x \in A$$
 and $(f \circ g)(x) = x \quad \forall x \in B$

- Notice that in the definition we refer to "the inverse" as opposed to "annuese" because, if the inverse exists it is unique.
- The inverse effectively "undoes" the effect of f

If
$$f(a) = b$$
 then $f^{-1}(b) = a$

- The inverse of f exists if and only if f is bijective, i.e., f is one-to-one and onto
- Existence of a function inverse is fundamental to cryptography, lossless compression, relational databases, communication protocols, etc.
- Existence implies nothing about the relative ease of obtaining f^{-1} , or if found the effort to compute $f^{-1}(x)$.

Definition 9 (Inverse of a Function)

Let $f: A \to B$. If there exists a function $g: B \to A$ such that

$$(g \circ f)(x) = x \quad \forall x \in A$$
 and $(f \circ g)(x) = x \quad \forall x \in B$

- Notice that in the definition we refer to "the inverse" as opposed to "an inverse" because, if the inverse exists it is unique.
- The inverse effectively "undoes" the effect of f.

If
$$f(a) = b$$
 then $f^{-1}(b) = a$

- The inverse of f exists if and only if f is bijective, i.e., f is one-to-one and onto
- Existence of a function inverse is fundamental to cryptography, lossless compression, relational databases, communication protocols, etc.
- Existence implies nothing about the relative ease of obtaining f^{-1} , or if found the effort to compute $f^{-1}(x)$.

Definition 9 (Inverse of a Function)

Let $f: A \to B$. If there exists a function $g: B \to A$ such that

$$(g \circ f)(x) = x \quad \forall x \in A$$
 and $(f \circ g)(x) = x \quad \forall x \in B$

- Notice that in the definition we refer to "the inverse" as opposed to "an inverse" because, if the inverse exists it is unique.
- The inverse effectively "undoes" the effect of f.

If
$$f(a) = b$$
 then $f^{-1}(b) = a$

- The inverse of f exists if and only if f is bijective, i.e., f is one-to-one and onto
- Existence of a function inverse is fundamental to cryptography, lossless compression, relational databases, communication protocols, etc.
- Existence implies nothing about the relative ease of obtaining f^{-1} , or if found the effort to compute $f^{-1}(x)$.

Definition 9 (Inverse of a Function)

Let $f: A \to B$. If there exists a function $g: B \to A$ such that

$$(g \circ f)(x) = x \quad \forall x \in A$$
 and $(f \circ g)(x) = x \quad \forall x \in B$

- Notice that in the definition we refer to "the inverse" as opposed to "an inverse" because, if the inverse exists it is unique.
- The inverse effectively "undoes" the effect of f.

If
$$f(a) = b$$
 then $f^{-1}(b) = a$

- The inverse of f exists if and only if f is bijective, i.e., f is one-to-one and onto.
- Existence of a function inverse is fundamental to cryptography, lossless compression, relational databases, communication protocols, etc.
- Existence implies nothing about the relative ease of obtaining f^{-1} , or if found the effort to compute $f^{-1}(x)$.

Definition 9 (Inverse of a Function)

Let $f: A \to B$. If there exists a function $g: B \to A$ such that

$$(g \circ f)(x) = x \quad \forall x \in A$$
 and $(f \circ g)(x) = x \quad \forall x \in B$

- Notice that in the definition we refer to "the inverse" as opposed to "an inverse" because, if the inverse exists it is unique.
- The inverse effectively "undoes" the effect of f.

If
$$f(a) = b$$
 then $f^{-1}(b) = a$

- The inverse of f exists if and only if f is bijective, i.e., f is one-to-one and onto.
- Existence of a function inverse is fundamental to cryptography, lossless compression, relational databases, communication protocols, etc.
- Existence implies nothing about the relative ease of obtaining f^{-1} , or if found the effort to compute $f^{-1}(x)$.

Definition 9 (Inverse of a Function)

Let $f: A \to B$. If there exists a function $g: B \to A$ such that

$$(g \circ f)(x) = x \quad \forall x \in A$$
 and $(f \circ g)(x) = x \quad \forall x \in B$

- Notice that in the definition we refer to "the inverse" as opposed to "an inverse" because, if the inverse exists it is unique.
- The inverse effectively "undoes" the effect of f.

If
$$f(a) = b$$
 then $f^{-1}(b) = a$

- The inverse of f exists if and only if f is bijective, i.e., f is one-to-one and onto.
- Existence of a function inverse is fundamental to cryptography, lossless compression, relational databases, communication protocols, etc.
- Existence implies nothing about the relative ease of obtaining f^{-1} , or if found the effort to compute $f^{-1}(x)$.

Example 10

On the set $A = \{0, 1, 2, 3, 4\}$ the functions

$$f: A \to A: x \mapsto -\frac{5}{6}x^4 + \frac{20}{3}x^3 - \frac{50}{3}x^2 + \frac{83}{6}x$$

and

$$g:A\to A:x\mapsto 2x\bmod 5$$

Example 10

On the set $A = \{0, 1, 2, 3, 4\}$ the functions

$$f: A \to A: x \mapsto -\frac{5}{6}x^4 + \frac{20}{3}x^3 - \frac{50}{3}x^2 + \frac{83}{6}x$$

and

$$g: A \to A: x \mapsto 2x \mod 5$$

are inverse functions.

0 • 1 • 2 • 3 • 4 •

 \boldsymbol{A}

•0 •1 •2 •3 A
-0
-1
-2
-3
-4

Example 10

On the set $A = \{0, 1, 2, 3, 4\}$ the functions

$$f: A \to A: x \mapsto -\frac{5}{6}x^4 + \frac{20}{3}x^3 - \frac{50}{3}x^2 + \frac{83}{6}x$$

and

$$g: A \to A: x \mapsto 2x \mod 5$$

Example 10

On the set $A = \{0, 1, 2, 3, 4\}$ the functions

$$f: A \to A: x \mapsto -\frac{5}{6}x^4 + \frac{20}{3}x^3 - \frac{50}{3}x^2 + \frac{83}{6}x$$

and

$$g: A \to A: x \mapsto 2x \mod 5$$

Example 10

On the set $A = \{0, 1, 2, 3, 4\}$ the functions

$$f: A \to A: x \mapsto -\frac{5}{6}x^4 + \frac{20}{3}x^3 - \frac{50}{3}x^2 + \frac{83}{6}x$$

and

$$g: A \to A: x \mapsto 2x \mod 5$$

Example 10

On the set $A = \{0, 1, 2, 3, 4\}$ the functions

$$f: A \to A: x \mapsto -\frac{5}{6}x^4 + \frac{20}{3}x^3 - \frac{50}{3}x^2 + \frac{83}{6}x$$

and

$$g: A \to A: x \mapsto 2x \mod 5$$

Example 11 (Caesar Cipher)

The Caesar cipher, also known as a shift cipher, is one of the simplest forms of encryption. It is a substitution cipher where each letter in the original message (called the plaintext) is replaced with corresponding letter at a fixed shift in the alphabet with wrap around.

Decrypting with shift of 3.

If *n* is the required shift, and we have functions to map letters to/from integers such that 'A' \leftrightarrow 0, 'B' \leftrightarrow 1, ..., 'Z' \leftrightarrow 25 then we have inverse function pair

$$E_n(x) = (x+n) \bmod 26$$

and

$$D_n(x) = (x - n) \bmod 26$$

In other words, $(D_n \circ E_n)(x) = x$

[¶]Apparently Caesar used to prefer an offset of 3 letters, and would shave slaves' head, tattoo encrypted message, wait till hair regrows and then send "message".

Application

Caesar's used a shift of 3 so had encrypt/decrypt inverse pair E_3 and D_3 ,

The following message was encrypted using E_3

$$VHQG$$
 $PRUH$ $IRRG$

Decrypt the message

^ISecurity-wise, this is worse than useless, and has not been used since the 16th century, but a shift of 13 was (is?) popular in usenet newsgroups when posting offensive content. Google "ROT13"

Implementation

If n is the required shift, then using the ord and chr functions in Python** we have inverse function pair

$$E_n(c) = \mathbf{chr} \left(\underbrace{\left(\underbrace{\mathbf{ord}(c) - \mathbf{ord}('A') + n} \right) \bmod 26}_{\text{get integer in range } 0 \dots 25} + \mathbf{ord}('A') \right)$$

$$\underbrace{\mathbf{product}_{\text{apply shift}} + \mathbf{ord}_{\text{apply wrap around}} + \mathbf{ord}_$$

and decrypt function

$$D_n(c) = \mathbf{chr}\bigg(\big((\mathbf{ord}(c) - \mathbf{ord}('A') + (26 - n)) \bmod 26 \big) + \mathbf{ord}('A') \bigg) = E_{26 - n}(x)$$

^{**}These functions map to/from ASCII values, so we have 'A' \leftrightarrow 65, 'B' \leftrightarrow 66, . . . , 'Z' \leftrightarrow 90

```
caesar.py
   def shift (n, x):
       return (x+n) % 26
   def encrypt (n, message):
       result = ""
       for c in message:
            if 'A'<=c<='Z':
                result += chr(shift(n, ord(c)-ord('A')) + ord('A'))
            else:
                result += c
10
       return result
                                                                      caesar.py
```

```
plaintext = "ATTACK_AT_DAWN"

cypertext = encrypt(3, plaintext)

test = decrypt(3, cypertext)

print ("Plaintext_=_", plaintext)

print ("Cypertext_=_", cypertext)

print ("Cypertext_=_", cypertext)

print ("test_____", test)
```


Review Exercises 1 (Function Inverse)

Question 1:

Let $A = \{1, 2, 3\}$. Define $f : A \to A$ by f(1) = 2, f(2) = 1, and f(3) = 3. Find f^2 , f^3 , f^4 and f^{-1} .

Question 2:

Let f, g, and h all be functions from \mathbb{Z} into \mathbb{Z} defined by f(n) = n + 5, g(n) = n - 2, and $h(n) = n^2$. Define:

 \bigcirc $f \circ g$

 $\bigcirc f^3$

 \bigcirc $f \circ h$

Question 3:

Define s, u, and d, all functions on the set of integers, \mathbb{Z} , by $s(n) = n^2$, u(n) = n + 1, and d(n) = n - 1. Determine:

 $u \circ s \circ d$

 \circ $s \circ u \circ d$

 \bigcirc $d \circ s \circ u$

Question 4:

Define the following functions on the integers by f(k) = k + 1, g(k) = 2k, and $h(k) = \lceil k/2 \rceil$

- Which of these functions are one-to-one?
- Which of these functions are onto?
- **Solution** Express in simplest terms the compositions $f \circ g$, $g \circ f$, $g \circ h$, $h \circ g$, and h^2 ,