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Operations

Functions — Where are we ?

At this point we have:
defined what a function is (any process that generates exactly one output for
each input)
covered fundamental concepts (source, target, domain, image),
covered properties (injective, surjective and bijective).

we want to discuss
function operations — constructing new functions by adding/multiplying
functions* or by applying one function after another function.
function inverse — finding function pairs that have the property that applying
one after the other results in the original input.
yet another graphical representation of functions — using 2D Cartesian graphs
to represent functions.
a library of useful functions in computing.

*These are a bigger deal in calculus than in discrete mathematics
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Operations

Evaluating Functions
Before we start combining functions, I want to make sure that you are happy with
evaluating a function.†

Example 1
Given the function f : x 7→ 2x2 − x + 3, evaluate

1 f (−a) 2 f (2a) 3 f (a + h) 4 f (x + 5)

1 f (−a)
f (−a) = 2

[
−a
]2 − [−a

]
+ 3 = 2a2 + a + 3

2 f (2a)
f (2a) = 2

[
2a
]2 − [2a

]
+ 3 = 8a2 − 2a + 3

3 f (a + h)
f (a + h) = 2

[
a + h

]2 − [a + h
]
+ 3 = 2a2 + 4ah + 2h2 − a− h + 3

4 f (x + 5)
f (x + 5) = 2

[
x + 5

]2 −
[
x + 5

]
+ 3 = 2x2 + 10x− x + 48

†Simply use an extra set of brackets to ensure correct order of operations.
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Operations Function Equality

Function Equality
Two functions are equal if they have the same domain and the same rule/mapping.

Definition 2 (Function Equality)
Let f and g be two functions. Then

f = g ⇐⇒ Dom(f ) = Dom(g)︸ ︷︷ ︸
same domain

∧ f (x) = g(x) ∀x ∈ Dom(f )︸ ︷︷ ︸
same rule

Two functions that have different domains cannot be equal. For example,

f : Z→ Z : x 7→ x2 and g : R→ R : x 7→ x2

are not equal even though the rule that defines them is the same.
However, it is not uncommon for two functions to be equal even though they
are defined differently. For example

h : {−1, 0, 1, 2} → {0, 1, 2} : x 7→ |x|
and

k : {−1, 0, 1, 2} → {0, 1, 2} : x 7→ −x3

3
+ x2 +

x
3

appear to be very different functions. However, they are equal because,
domains are equal and h(x) = k(x) for all x ∈ {−1, 0, 1, 2}.
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Operations Add/Subtract/Multiply/Divide

Function Addition/Subtraction/Multiplication/Division
I’m throwing these four operations together in the hope that you see that this is just
notational convenience‡. You will cover these more formally in your Calculus
module.

Definition 3
Given two functions f : x 7→ f (x) and g : x 7→ g(x) then (informally) the

sum function is
(f + g) : x 7→ f (x) + g(x)

difference function is
(f − g) : x 7→ f (x)− g(x)

product function is
(fg) : x 7→ f (x)g(x)

quotient function is

(f/g) : x 7→ f (x)/g(x) g(x) 6= 0

‡What programmers call “syntax sugar”.
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Operations Add/Subtract/Multiply/Divide

Example 4

Example 4
Let f : x 7→ x4 − 16 and g : x 7→ |x| − 4 Determine

1 (f +g)(2) 2 (fg)(2) 3

(
f
g

)
(2) 4

(
g
f

)
(2) 5

(
g
f

)
(1)

1 (f + g)(2) = f (2) + g(2) =
[
0
]
+
[
− 2
]
= −2

2 (fg)(2) = f (2)g(2) =
[
0
]
·
[
− 2
]
= 0

3

(
f
g

)
(2) =

f (2)
g(2)

=
0
−2

= 0

4

(
g
f

)
(2) =

g(2)
f (2)

=
−2
0

= not allowed =⇒ 2 6∈ Dom(g/f )

5

(
g
f

)
(1) =

g(1)
f (1)

=
−3
−15

= 1
5
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Operations Function Composition

Function Composition

Definition 5 (Function Composition)
Let f : A→ B and g : B→ C. Then the composition of f followed by g, written
g ◦ f is a function from A into C defined by

(g ◦ f )(x) = g(f (x))

which is read as “g of f of x” or “g after f of x”

A

1

2

3

B

a

b
c

C

A

B

C

f

f = {(1, a), (2, a), (3, b)}

g

g = {(a,B), (b,C), (c,A)}

g ◦ f

x f (x) g(f (x)) = (g ◦ f )(x)

g ◦ f = {(1,B), (2,B), (3,C)}
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Operations Function Composition

Example 6

Example 6 (Function composition using formulae)
Consider functions f : R→ R : x 7→ x3 and g : R→ R : x 7→ 3x + 1. Then,
construct functions g ◦ f and f ◦ g.

g ◦ f
g ◦ f : R→ R : x 7→ g(f (x))

and since g(f (x)) = g(x3) = 3
[
x3
]
+ 1 we have

g ◦ f : R→ R : x 7→ 3x3 + 1

f ◦ g
f ◦ g : R→ R : x 7→ f (g(x))

and since f (g(x)) = f (3x + 1) =
[
3x + 1

]3
we have

f ◦ g : R→ R : x 7→ 27x3 + 27x2 + 9x + 1

Note that, in general, f ◦ g 6= g ◦ f .
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Operations Function Composition

Properties of Function Composition
While the previous example shows that we cannot change the order of functions in a
function composition we are free to change the grouping . . .

Theorem 7 (Function composition is associative)
Given three function, f : A→ B, g : B→ C, and h : C→ D, then

h ◦ (g ◦ f ) = (h ◦ g) ◦ f

This result means that no matter how the functions in the expression h ◦ g ◦ f
are grouped, the final image of any element of x ∈ A is h(g(f (x)))

Using function composition we can define repeated application of functions§ . . .

Definition 8 (“Powers” of Functions)
Let f : A→ A.

f 1 = f ; that is, f 1(a) = f (a), for a ∈ A.
For n ≥ 1, f n+1 = f ◦ f n; that is, f n+1(a) = f

(
f n(a)

)
for a ∈ A.

§Take care of notation here: f 2(x) 6= (f (x))2, etc.
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Function Inverse

Inverse of a Function

Definition 9 (Inverse of a Function)
Let f : A→ B. If there exists a function g : B→ A such that

(g ◦ f )(x) = x ∀x ∈ A and (f ◦ g)(x) = x ∀x ∈ B

then g is called the inverse of f and is denoted by f−1, read “f inverse”.

Notice that in the definition we refer to “the inverse” as opposed to “an
inverse” because, if the inverse exists it is unique.
The inverse effectively “undoes” the effect of f .

If f (a) = b then f−1(b) = a

The inverse of f exists if and only if f is bijective, i.e., f is one-to-one and onto.
Existence of a function inverse is fundamental to cryptography, lossless
compression, relational databases, communication protocols, etc.
Existence implies nothing about the relative ease of obtaining f−1, or if found
the effort to compute f−1(x).

12 of 57



Function Inverse

Inverse of a Function

Definition 9 (Inverse of a Function)
Let f : A→ B. If there exists a function g : B→ A such that

(g ◦ f )(x) = x ∀x ∈ A and (f ◦ g)(x) = x ∀x ∈ B

then g is called the inverse of f and is denoted by f−1, read “f inverse”.

Notice that in the definition we refer to “the inverse” as opposed to “an
inverse” because, if the inverse exists it is unique.
The inverse effectively “undoes” the effect of f .

If f (a) = b then f−1(b) = a

The inverse of f exists if and only if f is bijective, i.e., f is one-to-one and onto.
Existence of a function inverse is fundamental to cryptography, lossless
compression, relational databases, communication protocols, etc.
Existence implies nothing about the relative ease of obtaining f−1, or if found
the effort to compute f−1(x).

12 of 57



Function Inverse

Inverse of a Function

Definition 9 (Inverse of a Function)
Let f : A→ B. If there exists a function g : B→ A such that

(g ◦ f )(x) = x ∀x ∈ A and (f ◦ g)(x) = x ∀x ∈ B

then g is called the inverse of f and is denoted by f−1, read “f inverse”.

Notice that in the definition we refer to “the inverse” as opposed to “an
inverse” because, if the inverse exists it is unique.
The inverse effectively “undoes” the effect of f .

If f (a) = b then f−1(b) = a

The inverse of f exists if and only if f is bijective, i.e., f is one-to-one and onto.
Existence of a function inverse is fundamental to cryptography, lossless
compression, relational databases, communication protocols, etc.
Existence implies nothing about the relative ease of obtaining f−1, or if found
the effort to compute f−1(x).

12 of 57



Function Inverse

Inverse of a Function

Definition 9 (Inverse of a Function)
Let f : A→ B. If there exists a function g : B→ A such that

(g ◦ f )(x) = x ∀x ∈ A and (f ◦ g)(x) = x ∀x ∈ B

then g is called the inverse of f and is denoted by f−1, read “f inverse”.

Notice that in the definition we refer to “the inverse” as opposed to “an
inverse” because, if the inverse exists it is unique.
The inverse effectively “undoes” the effect of f .

If f (a) = b then f−1(b) = a

The inverse of f exists if and only if f is bijective, i.e., f is one-to-one and onto.
Existence of a function inverse is fundamental to cryptography, lossless
compression, relational databases, communication protocols, etc.
Existence implies nothing about the relative ease of obtaining f−1, or if found
the effort to compute f−1(x).

12 of 57



Function Inverse

Inverse of a Function

Definition 9 (Inverse of a Function)
Let f : A→ B. If there exists a function g : B→ A such that

(g ◦ f )(x) = x ∀x ∈ A and (f ◦ g)(x) = x ∀x ∈ B

then g is called the inverse of f and is denoted by f−1, read “f inverse”.

Notice that in the definition we refer to “the inverse” as opposed to “an
inverse” because, if the inverse exists it is unique.
The inverse effectively “undoes” the effect of f .

If f (a) = b then f−1(b) = a

The inverse of f exists if and only if f is bijective, i.e., f is one-to-one and onto.
Existence of a function inverse is fundamental to cryptography, lossless
compression, relational databases, communication protocols, etc.
Existence implies nothing about the relative ease of obtaining f−1, or if found
the effort to compute f−1(x).

12 of 57



Function Inverse

Inverse of a Function

Definition 9 (Inverse of a Function)
Let f : A→ B. If there exists a function g : B→ A such that

(g ◦ f )(x) = x ∀x ∈ A and (f ◦ g)(x) = x ∀x ∈ B

then g is called the inverse of f and is denoted by f−1, read “f inverse”.

Notice that in the definition we refer to “the inverse” as opposed to “an
inverse” because, if the inverse exists it is unique.
The inverse effectively “undoes” the effect of f .

If f (a) = b then f−1(b) = a

The inverse of f exists if and only if f is bijective, i.e., f is one-to-one and onto.
Existence of a function inverse is fundamental to cryptography, lossless
compression, relational databases, communication protocols, etc.
Existence implies nothing about the relative ease of obtaining f−1, or if found
the effort to compute f−1(x).

12 of 57



Function Inverse

Example 10

Example 10
On the set A = {0, 1, 2, 3, 4} the functions

f : A→ A : x 7→ −5
6

x4 +
20
3

x3 − 50
3

x2 +
83
6

x

and
g : A→ A : x 7→ 2x mod 5

are inverse functions.

A

0

1

2

3

4

B

0

1

2

3

4

C

0

1

2

3

4

A Af gf
g ◦ f
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Function Inverse

Example — Caesar Cipher I

Example 11 (Caesar Cipher)
The Caesar cipher, also known as a shift cipher,
is one of the simplest forms of encryption. It is
a substitution cipher where each letter in the
original message (called the plaintext) is
replaced with corresponding letter at a fixed
shift¶ in the alphabet with wrap around. Decrypting with shift of 3.

If n is the required shift, and we have functions to map letters to/from integers such
that ‘A’↔ 0, ‘B’↔ 1, . . . , ‘Z’↔ 25 then we have inverse function pair

En(x) = (x + n) mod 26

and
Dn(x) = (x− n) mod 26

In other words, (Dn ◦ En)(x) = x

¶Apparently Caesar used to prefer an offset of 3 letters, and would shave slaves’ head, tattoo
encrypted message, wait till hair regrows and then send “message”.
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Function Inverse

Example — Caesar Cipher II

Application

Caesar’s used|| a shift of 3 so had encrypt/decrypt inverse pair E3 and D3,

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
l l l l l l l l l l l l l l l l l l l l l l l l l l
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

E3 D3

The following message was encrypted using E3

V H Q G P R U H I R R G

Decrypt the message

||Security-wise, this is worse than useless, and has not been used since the 16th century, but a shift of
13 was (is?) popular in usenet newsgroups when posting offensive content. Google “ROT13”
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Function Inverse

Example — Caesar Cipher III

Implementation

If n is the required shift, then using the ord and chr functions in Python** we have
inverse function pair

En(c) = chr
((

(ord(c)− ord(′A′)︸ ︷︷ ︸
get integer in range 0 . . . 25

+n)

︸ ︷︷ ︸
apply shift

mod 26
)

︸ ︷︷ ︸
apply wrap around

+ord(′A′)

︸ ︷︷ ︸
Add back ASCII offset

)

︸ ︷︷ ︸
convert back to uppercase character

and decrypt function

Dn(c) = chr
((

(ord(c)− ord(′A′) + (26− n)) mod 26
)
+ ord(′A′)

)
= E26−n(x)

**These functions map to/from ASCII values, so we have ‘A’↔ 65, ‘B’↔ 66, . . . , ‘Z’↔ 90
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Function Inverse

Example — Caesar Cipher IV
caesar .py

1 def s h i f t ( n , x ) :
2 re turn ( x+n ) % 26
3

4 def e n c r y p t ( n , message ) :
5 r e s u l t = " "
6 f o r c in message :
7 i f ’A’<=c <= ’Z ’ :
8 r e s u l t += chr ( s h i f t ( n , ord ( c ) − ord ( ’A’ ) ) + ord ( ’A’ ) )
9 e l s e :

10 r e s u l t += c
11 re turn r e s u l t

caesar .py

caesar .py

16 p l a i n t e x t = "ATTACK AT DAWN"
17 c y p e r t e x t = e n c r y p t ( 3 , p l a i n t e x t )
18 t e s t = d e c r y p t ( 3 , c y p e r t e x t )
19

20 p r i n t ( " P l a i n t e x t = " , p l a i n t e x t )
21 p r i n t ( " C y p e r t e x t = " , c y p e r t e x t )
22 p r i n t ( " t e s t = " , t e s t )

caesar .py

1 P l a i n t e x t = ATTACK AT DAWN
2 C y p e r t e x t = DWWDFN DW GDZQ
3 t e s t = ATTACK AT DAWN
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ROT13
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Review Exercises 1 (Function Inverse)
Question 1:
Let A = {1, 2, 3}. Define f : A→ A by f (1) = 2, f (2) = 1, and f (3) = 3. Find f 2 , f 3 , f 4 and f−1.

Question 2:
Let f , g, and h all be functions from Z into Z defined by f (n) = n + 5, g(n) = n− 2, and h(n) = n2.
Define:

(a) f ◦ g (b) f 3 (c) f ◦ h

Question 3:
Define s, u, and d, all functions on the set of integers, Z, by s(n) = n2 , u(n) = n + 1, and
d(n) = n− 1. Determine:

(a) u ◦ s ◦ d (b) s ◦ u ◦ d (c) d ◦ s ◦ u

Question 4:
Define the following functions on the integers by f (k) = k + 1, g(k) = 2k, and h(k) = dk/2e

(a) Which of these functions are one-to-one?
(b) Which of these functions are onto?
(c) Express in simplest terms the compositions f ◦ g, g ◦ f , g ◦ h, h ◦ g, and h2 ,
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