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Graphical Representation on the 2D Cartesian Plane

Motivation

To date we have covered two graphical representations of functions (relations):
Venn diagram — two sets representing the source and target with arrow(s)
going from elements in the source to elements in the target if the pair are
related.
Diagraph — Applicable when the source and target are identical. Each node
represents an element in the source, with directed arrow between nodes if they
are related.

These representations are effective when dealing with discrete, finite sets. However,
when dealing with continuous or infinite sets it is usually more informative if we
use graphical representations based on representing pairs in the function (relation)
by points on the 2D Cartesian plane:

The representation of functions on the 2D Cartesian plane is a major part of
next semester’s module, Calculus.
So for now we will just demonstrate it via a few examples.
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Graphical Representation on the 2D Cartesian Plane

Example — Function on a Discrete, Finite Set
Consider the function f on set A = {−1, 0, 1, 2} with rule x 7→ − x3

3 + x2 + x
3 . This

function can be represented using

Venn diagram

A
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1

2

B
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0

1

2

Af
Lookup Table

x f (x)
−1 1
0 0
1 1
2 2

Relation

f = {(−1, 1), (0, 0), (1, 1), (2.2)}

Digraph

-1

0

1

2

2D Cartesian Graph
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Graphical Representation on the 2D Cartesian Plane

Example — Function on a Discrete Infinite Set

Consider the function on A = N \ {0} defined by

f : A→ A : x 7→ number of factors of x

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

•

• •

•

•

•

•

•

•

•

•

x f (x)
1 1
2 2
3 2
4 3
5 2
6 4
...

...

Both representations are only a finite sample of an infinite set — difficult, if
not impossible, to be representative.
Note, in 2D Cartesian graph, it is easy to spot the primes.
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Graphical Representation on the 2D Cartesian Plane

Example — Function on a Continuous Infinite Set

Consider the function on R defined by

f : R→ R : x 7→ bxc

where bxc represents the floor function*

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−3

−1

1

3

5

Solid dot means end point is included, while empty dot means end point is
excluded.

*returns the greatest integer that is less than or equal to the input.
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Library of Functions

Motivation

While our focus in this module is discrete mathematics, and so we are mainly
interested in functions on discrete sets. The functions over real numbers that you
covered in at second level are also important. For example,

The running time of algorithms (number of steps required) is usually written as
a polynomial, a log, or an exponential.
The Heaviside is used to model on/off switches.
The trigonometric functions are used in 3D graphics.
. . .

These functions are cover properly in next semester Calculus module. Here, in the
following slides, I have a very quick and superficial reminder of some of the more
important functions.
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Library of Functions

Library of Functions

Functions

Absolute value function and friends |x|, sgn(x), H(x)

Floor and Ceiling bxc and dxe

Power functions of the form f (x) = xa for a ∈ R

Polynomials constant: f (x) = c
line: f (x) = mx + c

quadratic: f (x) = ax2 + bx + c
cubic: f (x) = ax3 + bx2 + cx + d

· · ·

Rational
functions of the form f (x) = p(x)/q(x)
where p(x) and q(x) are polynomials

Trigonometric
Fundamental: sin, cos, tan
Inverse: asin, acos, atan
Reciprocal: csc, sec, cot

Exponential and logarithmic exp, ln, log

Hyperbolic sinh, cosh, tanh
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Library of Functions

Absolute Value Function and Friends I

Definition 1 (Absolute Value Function)
The absolute value function is defined over R as

|x| =
√

x2 or equivalently as |x| =

{
−x, x < 0

x, x ≥ 0

Satisfies properties
|x| ≥ 0
|x| = 0 ⇐⇒ x = 0

|xy| = |x||y|
|x + y| ≤ |x|+ |y|

Useful for representing distances,
e.g., |x− c| = a represents the set of
points that are exactly a units
distance from c.

x0

y
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Library of Functions

Absolute Value Function and Friends II
Definition 2 (Signum function)
The signum function is defined as

sgn(x)


−1, x < 0

0, x = 0
1, x > 0

Alternative definition is

sgn(x) =

{
|x|/x, x 6= 0

0, x = 0

Some definitions of sgn(x) have sgn(0)
as undefined. Again, this is not a big
deal as long as everyone knows which
definition is used.

x0

y

-1

1

11 of 57



Library of Functions

Absolute Value Function and Friends III
Definition 3 (Heaviside functions)
A Heaviside function, H(x), is defined as

H(x)

{
0, x < 0
1, x ≥ 0

The Heaviside function is used to
represent a switch turning on at a
particular point.
Alternative definitions using absolute
and/or the signum function are possible
Some definitions set H(0) = 1/2. Again,
this is not a big deal as long as everyone
knows which definition is used.
The version defined above is called the
right continuous Heaviside function.

x0

y
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Library of Functions

Power Functions I

Definition 4 (Power function)
A function of the form

f : (0;∞)→ (0;∞) : x 7→ xa

with real constant exponent a ∈ R, is called a power function.

The domain can be extended for
particular values of the exponent. a. For
example

If a ∈ N \ {0} then Dom(f ) = R.
eg x, x2, . . .
If a ∈ Z with odd denominator then
Dom(f ) = R \ {0}.
eg x

1
3 , x−

2
5 , . . . x

y

0

1

1

a = 1

a = 0

a = 1/2

a = 1/4

a = −1
a = −2

a = 2
a = 3
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Library of Functions

Polynomials I

Definition 5 (Polynomial Function)
A function f : R→ R whose formula is of the form

f (x) = anxn + an−1xn−1 + · · ·+ a1x + a0,

with coefficients ak ∈ R, an 6= 0, is called a polynomial function of degree n.

General Properties
1 A polynomial of degree n has up to n roots (zeros/solutions) and up to n− 1

local minima/maxima.
2 The behaviour for |x| large is determined by the leading order term: anxn.
3 The behaviour for |x| small (near zero) is determined by the lowest order

non-zero coefficient: a0 or a1x or a2x2 etc.

Polynomials are important as they are easy to manipulate, implement on a
computer, versatile, and can efficiently model any finite, bounded, smooth curve.
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Library of Functions

Polynomials II
Case n = 0: constant

If n = 0 then

f (x) = c

for some real constant coefficients c, this
is called a constant function.

x

y

0

f (x) = c
c

Case n = 1: afine
If n = 1 then

f (x) = mx + c

for some real constant coefficients,
m 6= 0 and c, this is called an affine
function with slope m, and intercept c.

slope =
difference in output
difference in input

Single root at x = −c/m

x

y

0

c

f (x) = mx + c

m positive

x

y

0

c

m negative
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Library of Functions

Polynomials III
Case n = 2: quadratic

If n = 2 then

f (x) = ax2 + bx + c

for some real constant coefficients,
a 6= 0, b and c, this is called an
quadratic function.
Has canonical form

f (x) = a
(

x +
b

2a

)2

− b2 − 4ac
4a

(Used to locate local extrema and
range.)
Has roots at

−b±
√

b2 − 4ac
2a

b2
−

4a
c
<

0

x

y

0

a > 0

x

y

0

a < 0

b2
−

4a
c
=

0

x

y

0
x

y

0

b2
−

4a
c
>

0

x

y

0
x

y

0
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