Chapter Summary — Relations and Functions This document is a very rough summary of the the concepts and tasks that we covered in this chapter. The plan is to write a similar document at the end of each chapter, but time will tell. I hope this document will be use to you when revising the chapter. However, please do not think that this comes with any guarantee of completeness — the probability of me overlooking something is large. Please ask if you think I have omitted anything. - kmurphy, 23 Oct, 2021

Section A: Concepts

A.1: Relations

□ Definition of relation based on subsets of a Cartesian product

- \Box A relation is a set so properties/concepts of sets carry over to relations.
- \Box Terminology: source and target, and domain and image
- \Box Properties of relations from set A to set B (i.e., relating to the output values)
 - \Box one to one (injective)
 - \square into vs onto (surjective)
 - \Box bijective = injective + surjective

\Box Properties of relations on a set (source=target)

- \Box Main three properties: reflexive, symmetric and transitive
- \Box anti-symmetric
- \Box iireflective and asymmetric

\Box Equivalence relation = reflexive, symmetric and transitive

 \Box Decomposition of a set into equivalence classes.

□ Representation of relations

- \Box Set of ordered pairs
- \Box Venn diagrams good for discrete (any usually finite) sets
- \Box Digraph for relations on a set (source=target)

A.2: Functions

\Box Definition of function as a restricted relation — exactly one outgoing arrow for each element in the source

- \Box A function is a relations so properties/concepts of relations carry over to functions.
- \Box Formal vs informal definition of functions

\square Representation of functions (in addition to those for relations (above))

- \Box Lookup table
- \Box Formula good for continuous or infinite sets
- \square 2D Cartesian Plots good for continuous or infinite sets

\Box Algebra of functions

- □ Notation: addition/subtraction/multiplication/division of functions
- \Box Function composition
 - \square Repeated iteration of functions

\Box Function inverse

 \Box bijective = necessary and sufficient condition for existence of inverse function pair.

Section B: Tasks

- B.1: Relations
- \Box Verify that a set is a relation from set A to set B.
- \Box Represent a relation using suitable format (3 options)
- $\hfill\square$ Verify that a relation has/does not have various properties
- B.2: Functions
- \Box Represent a function using suitable format (6 options)
- \Box Verify that a function has/does not have various properties in particular injective, surjective and bijective