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Binomial Coefficients

Motivation

Today we will focus on problems that can modelled using repeated/multiple choices
where each choice has only two options. Having fewer options should make life
easier, but despite this limitation the use of repeated/multiple two-option choices
allows us to model a wide variety of problems.

Subsets of a Set
How many subsets of a given set exist that satisfy a particular property?

Bit Strings

How many string containing 0’s or 1’s of length n satisfy a particular property?

Lattice Paths
Given a grid (think of Manhattan Island, New York) how many shortest paths
satisfy a particular property?

Binomial Coefficients
What is the expansion of (x + y)n for n ∈ N?
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Binomial Coefficients

Notation — Factorial Function

Definition 1 (Factorial)
If n ∈ N then the factorial function is defined by

n! =


1 n = 0
1× 2× · · · × n n > 0
not defned otherwise

i.e., the factorial of zero is one, and the factorial of a positive integer, n, is the
product of positive integers up to and including n.

The factorial function satisfies
n! = n× (n− 1)! 2! = 2× 1!, 3! = 3× 2!, 4! = 4× 3!,. . .

(n + 1)! = (n + 1)× n! (0 + 1)! = (0 + 1)× 0! =⇒ 1 = 1! = 0!

If r ≤ n then

n!
r!

=
n(n− 1) · · · (r + 1)

((((((((((
(r)(r − 1) · · · (3)(2)(1)

((((((((((
(r)(r − 1) · · · (3)(2)(1)

= n(n−1)(n−2) · · · (r+1)
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Binomial Coefficients

Python Implantation of Factorial — Iterative vs Recursive
We have two different definitions of the factorial function which give us two
different implementions

The factorial of integer n is

n! =

{
1 n = 0
1× 2× · · · × n n > 0

Iterative Definition

factorial_iterative .py

1 def f a c t o r i a l ( n ) :
2 r e s u l t = 1
3

4 f o r k in range ( 1 , n + 1 ) :
5 r e s u l t *= k
6 re turn r e s u l t
7

8 f o r k in [ 0 , 1 , 5 ] :
9 p r i n t ( k , " ! =" , f a c t o r i a l ( k ) )

factorial_iterative .py

The factorial of integer n is

n! =

{
1 n = 0
n× (n− 1)! n > 0

Recursive Definition

factorial_recursive .py

1 def f a c t o r i a l ( n ) :
2 # t e r m i n a l r u l e
3 i f n ==0: re turn 1
4

5 # r e c u r r e n c e r u l e
6 re turn n* f a c t o r i a l ( n −1)
7

8 f o r k in [ 0 , 1 , 5 ] :
9 p r i n t ( k , " ! =" , f a c t o r i a l ( k ) )

factorial_recursive .py

0 ! = 1
1 ! = 1
5 ! = 120
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Binomial Coefficients Subsets

Counting Subsets I

Given set A determine the number of subsets that satisfy a given criteria.
Problem: Counting Subsets

We want to represent the construction of subsets in terms of multiple, two-option
(yes-no) choices:

If A is a set of n = |A| elements, then any subset of A can be constructed via
the algorithm:

For each element a in A:
Decide whether to add a to subset or not } 2 options

}
2noptions

Example

Given the set of positive integers less than 21, construct the subset containing
primes
A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12,13,14,15,16,17,18,19,20,

N Y

2,

Y

3,

N Y

5,

N Y

7,

N N N Y

11,

N Y

13,

N N N Y

17,

N Y

19,

N

}

{ }
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Binomial Coefficients Subsets

Counting Subsets II

Example 2
Consider the set A = {1, 2, 3, 4, 5}.

(a) How many subsets does A have?
(b) How many of these subsets contain exactly 3 elements?

(a) How many subsets does A have?

Number of subsets of A is easy . . . |A| = 5, so number of subsets is 25 = 32.
(b) How many of these subsets contain exactly 3 elements?

Using the multiplication principle, to build a subset containing 3 elements . . .
We have 5 options for the first element in the subset
Then, we have 4 options for the second element in the subset.
Then, we have 3 options for the third element in the subset.

This gives us 5× 4× 3 = 60. But this is > 32 (from above) so something is
wrong.

We forgot to take account of the fact that order doesn’t matter in
a set, so what we have counted here is number of tuples/lists not
number of sets.
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Binomial Coefficients Subsets

Counting Subsets III

We need to remove the duplication due to the order not being important — how
many duplicates exist?

In other words, given a set of 3 elements, how many different ordering do we
have?

We have 3 options for the first element.
Then, we have 2 options for the second element.
Then, we have 1 option for the third element.

Giving, us 3× 2× 1 = 6 options for the different ordering of the selected 3
elements.
Hence, the number of subsets of size 3 is 60/6 = 10

Note that

number of lists
number of different orderings

=
60
6

=
5× 4× 3
3× 2× 1

=
5× 4× 3× (2× 1)
(3× 2× 1)(2× 1)

=
5!

3!2!
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Binomial Coefficients Subsets

Example 3 I

Example 3
How many subsets of size 0, 1, 2, . . . , 5 does A = {1, 2, 3, 4, 5} have?

Size 0: The only subset of zero size is the empty set, ∅, Hence answer is 1. =
5!

0!5!
Size 1: Number of subsets of size one is 5, i.e., {1}, {2}, {3}, {4} and {5}. Rather

than listing and counting them we can use the same argument as in the
previous example.

number of lists of length 1
number of different orderings

=
5
1

=
5!

1!4!
Size 2:

number of lists of length 2
number of different orderings

=
5× 4
2× 1

=
5!

2!3!
Size 3:

number of lists of length 3
number of different orderings

=
5× 4× 3
3× 2× 1

=
5!

3!2!
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Binomial Coefficients Subsets

Example 3 II

Size 4:
number of lists of length 4

number of different orderings
=

5× 4× 3× 2
4× 3× 2× 1

=
5!

4!1!
Size 5:

number of lists of length 5
number of different orderings

=
5× 4× 3× 2× 1
5× 4× 3× 2× 1

=
5!

5!0!

So we have

Number of elements 0 1 2 3 4 5

Number of subsets
5!

0!5!
5!

1!4!
5!

2!3!
5!

3!2!
5!

4!1!
5!

5!0!
1 5 10 10 5 1
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Example 3 II
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Binomial Coefficients Subsets

Example 3 II
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Binomial Coefficients Subsets

Subsets

Start

Construction

Questions

Subsets

Set with n elements

For each of the n ele-
ments, choice is no-yes
to include it in subset

Number of subsets

Number of subsets with
k elements
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Binomial Coefficients Counting Bit Strings

Binary String a.k.a. Bit Strings
We will now look at counting bit-strings, where “Bit” is short for “binary digit,”

Definition 4 (Bit String)
A string of of binary digits (0’s or 1’s) is called a bit string.

The number of bits in the string is the length of the string. A bit string of
length n is often called a n-bit string.
The number of 1’s in a bit string is the weight of the string.

Example

All of the following are bit strings:

1001 0 1111 1010101010

The strings above have lengths 4, 1, 4, and 10 respectively.
The weights of the above strings are 2, 0, 4, and 5 respectively.
The construction of a n-bit can be modelled by n yes-no choices.

Construction of bit-strings is similar to subsets, but here order matters

12 of 29
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Binomial Coefficients Counting Bit Strings

Counting Bit Strings
Since the construction of bit strings is similar to the construction of subsets we can
ask similar questions such as

How many bit strings of length n exist?
How many bit strings of length n have weight k?

However, since order is important for bit strings we can also ask questions like
How many bit strings start/end/contain a specified sequence of bits.
How many n-bit strings satisfy a specified numerical property?

Bn is the set of all bit strings of length n.
Bn

k is the set of all bit strings of length n and weight k.

Notation

Example

The set B3
2 represents strings containing three bits exactly two of which are 1’a:

B3
2 = {011, 101, 110}.

and the number of 3-bit strings with weight 2 is |B3
2|
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Binomial Coefficients Counting Bit Strings

Example 5

Example 5
What is the cardinality of B5, i.e., how many 5-bit string are there?

Solution: Each of the 5 bits can either be a 0 or a 1, i.e., 5 yes-no choices. There
are 2 choices for the first bit, 2 choices for the second, and so on. By the
multiplication principle, there are 2× 2× 2× 2× 2 = 25 = 32 such strings, so
|B5| = 32.

Note: We can also answer this question using recursion — expressing aproblem in
terms of a simpler/smaller version of itself.

All 5-bit strings can be constructed from prepending either a 0 or a 1 to all of
the 4-bit strings.

B5 = {0b|b ∈ B4}︸ ︷︷ ︸
00000,00001,. . . ,01111

∪ {1b|b ∈ B4}︸ ︷︷ ︸
10000,10001,. . . ,11111

=⇒ |B5| = 2|B4|

Similarly all 4-bit strings are constructed from 3-bit strings, and so on with
|B1| = 2.

|B5| = 2
(
|B4|

)
= 2

(
2|B3|

)
= 2

(
2
(

2|B2|
))

= 2

(
2
(

2
(

2|B1|
)))

= 25
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Binomial Coefficients Counting Bit Strings

Example 6 I

Example 6
What is the cardinality of B5

3, i.e., how many 5-bit strings have weight 3?

To construct a 5-bit string with exactly 3 ones, we can work as in the last example
— we prepend a zero or a one to a 4-bit string. However, we need to take care to
ensure we end up with exactly 3 ones.

B5
3︸︷︷︸

5-bit strings
with exactly 3 ones

= {0b|b ∈ B4
3︸︷︷︸

4-bit string
with exactly 3 ones

} ∪ {1b|b ∈ B4
2︸︷︷︸

4-bit string
with exactly 2 ones

} =⇒ |B5
3| = |B4

3|+ |B4
2|

This is a recurrence relation. We can repeat the above argument on |B4
3| and on |B4

2|
to get

|B4
3| = |B3

3|︸︷︷︸
B3

3 = {111}

+|B3
2| = 1 +

(
|B2

2|︸︷︷︸
B2

2 = {11}

+|B2
1|
)

= 1 + 1 +

(
|B1

1|︸︷︷︸
B1

1 = {1}

+ |B1
0|︸︷︷︸

B1
0 = {0}

)
= 4

and
|B4

2| = |B3
2|+ |B3

1| =
(
|B2

2|+ |B2
1|
)
+
(
|B2

1|+ |B2
0|
)
= 1 + 2 + 2 + 1 = 6

Hence |B5
3| = |B4

3|+ |B4
2| = 4 + 6 = 10.
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Binomial Coefficients Counting Bit Strings

Recurrence Relationship for |Bn
k|

The recursive relation we developed in the previous example for |B5
3| can be

generalised to

Recurrence Relation for |Bn
k |

|Bn
k | = |Bn−1

k−1|+ |B
n−1
k |

with terminal conditions |Bn
n| = 1 and |Bn

0| = 1 for all n.

This results come from the facts:
All n-bit string with weight k can be constructed by prepending a one to
(n−1)-bit strings with weight (k−1) or by prepending a zero to (n−1)-bit
strings with weight k.

and
There is only one n-bit string with weight n, i.e., all 1’s. And there is only
one n-bit string with weight 0, i.e., all 0’s.
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Binomial Coefficients Counting Bit Strings

Subsets vs Bit Strings

Start

Construction

Questions

Subsets

Set with n elements

For each of the n ele-
ments, choice is no-yes
to include it in subset

Number of subsets

Number of subsets with
k elements

Bit Strings

Space for an n-bit
string

For each of the n bits
spaces, choice is 0-1
(or off-on, no-yes).

Number of n-bit strings

Number of n-bit strings
with weight k
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Binomial Coefficients Counting Paths in Lattices

Lattices

Definition 7 (Lattice and Lattice Paths)

A lattice is a 2D grid of points (x, y) where x and y
coordinates are integers.
A lattice path is one of the shortest possible paths
connecting two points on the lattice, moving only
horizontally and vertically. A

B

Given start point, A, and end point, B, determine the number of lattice
paths that satisfy a given criteria.

Problem: Counting Lattice Paths

To ensure that a path is one of the shortest possible, each move must be either
to the right or up.
In the above diagram, note that no matter what path we take, we must make
four steps up and six steps to the right. No matter what order we make these
steps, there will always be 10 steps. Thus each path has length 10.
The construction of a lattice path can be represented as a repeated two option
(up-right) choice.
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Binomial Coefficients Counting Paths in Lattices

Example 8 I

Example 8
How many lattice paths between A = (0, 0) and B = (3, 2)?

Three (out of ?) possible lattices parts are

(0,0)

(3,2)

(0,0)

(3,2)

(0,0)

(3,2)

To ensure the path is the shortest possible, each move must be either to the
right or up.
No matter what path we take, we must make three steps right and two steps up.
No matter what order we make these steps, there will always be 5 steps. Thus
each path has length 5.
Rather than drawing a lattice path we could just list which direction
(U=up,R=Right) we travel on each of the 5 steps. The lattice paths shown
above are RRUUR, UURRR, and RURRU respectively.
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Binomial Coefficients Counting Paths in Lattices

Example 8 II

R

1

R

1

U

0

U

0

R

1

U

0

U

0

R

1

R

1

R

1

R

1

U

0

R

1

R

1

U

0

Notice that each of these strings must contain 5 symbols. Exactly 3 of them
must be R’s (since our destination is 3 units to the right).
In fact, say, we used 1’s instead of R’s and 0’s instead of U’s? Then we would
just have 5-bit strings of weight 3. From previous example, we know that there
are 10 of those, so there are 10 lattice paths from (0,0) to (3,2).

Number of lattice paths from A = (ax, ay) to B = (bx, by) is
equal to the number of n-bit strings with weight k where

n = |bx − ax|︸ ︷︷ ︸
number of

right moves

+ |by − ay|︸ ︷︷ ︸
number of
up moves

k = |bx − ax|︸ ︷︷ ︸
number of

right moves
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Binomial Coefficients Counting Paths in Lattices

Example 8 III
There is an another way to count lattice paths. Consider the lattice shown below:

(0,0)

(3,2)

D

C

Any lattice path from (0,0) to (3,2) must pass through exactly one of C and D.
The point C is 4 steps away from (0,0) and two of them are towards the right.
The number of lattice paths to C is the same as the number of 4-bit strings of
weight 2, namely 6.
The point D is 4 steps away from (0,0), but now 3 of them are towards the
right. So the number of paths to point B is the same as the number of 4-bit
strings of weight 3, namely 4.
So the total number of paths to (3,2) is just 6 + 4.
This is the same way we calculated the number of 5-bit strings of weight 3.
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Binomial Coefficients Counting Paths in Lattices

Subsets vs Bit Strings vs Lattice Paths

Start

Construction

Questions

Subsets

Set with n elements

For each of the n ele-
ments, choice is no-yes
to include it in subset

Number of subsets

Number of subsets with
k elements

Bit Strings

Space for an n-bit
string

For each of the n bits
spaces, choice is 0-1
(or off-on, no-yes).

Number of n-bit strings

Number of n-bit strings
with weight k

Lattice Paths

Want a lattice path of
length n steps

For each of the n steps,
choice is Up-Right (or
0-1).

Number of lattice paths
of length n

Number of lattice paths
of length n with k steps
to the right
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Binomial Coefficients Expanding Expressions of the Form (a + b)n

Binomial Coefficients I

Definition 9 (Binomial Coefficients)
Binomial coefficients are the coefficients in the expanded version of a binomial,
such as (x + y)n.

What happens when we multiply such a binomial out? We will expand (x + y)n for
various values of n. Each of these are done by multiplying everything out* and then
collecting like terms.

(x + y)0 = 1 1

(x + y)1 = 1x + 1y 1 1

(x + y)2 = 1x2 + 2xy + 1y2 1 2 1

(x + y)3 = 1x3 + 3x2y + 3xy2 + 1y3 1 3 3 1

(x + y)4 = 1x4 + 4x3y + 6x2y2 + 4xy3 + 1y4 1 4 6 4 1

(x + y)5 = 1x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + 1y5 1 5 10 10 5 1

*In programming terms, this is called FOIL-ing.
23 of 29



Binomial Coefficients Expanding Expressions of the Form (a + b)n

Binomial Coefficients II

If we define
(n

k

)
= n!

k!(n−k)! then the expansion of

(x + y)5 = 1x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + 1y5

can be written as

(x + y)5 =

(
5
0

)
x5y0 +

(
5
1

)
x4y1 +

(
5
2

)
x3y2 +

(
5
3

)
x2y3 +

(
5
4

)
x1y4 +

(
5
5

)
x0y5

In for general power, n, we have (x + y)n can be written as

Binomial Expansion Theorem

(x+y)n =

(
n
0

)
xny0+

(
n
1

)
xn−1y1+

(
n
2

)
xn−2y2+ · · ·+

(
n

n− 1

)
x1yn−1+

(
n
n

)
x0yn
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Binomial Coefficients Expanding Expressions of the Form (a + b)n

Binomial Coefficients III

To summarise what we know about binomial coefficients:

Definition 10 (Binomial Coefficients)
For each integer n ≥ 0 and integer k with 0 ≤ k ≤ n the number(

n
k

)
=

n!
k!(n− k)!

=
(n)(n− 1)(n− 2) · · · (n− k + 2)(n− k + 1)

(k)(k − 1)(k − 2) · · · (3)(2)(1)

read “n choose k” is a binomial coefficient. We have(n
k

)
= |Bn

k |, the number of n-bit strings of weight k.(n
k

)
is the number of subsets of a set of size n each with cardinality k.(n

k

)
is the number of lattice paths of length n containing k steps to the right.(n

k

)
is the coefficient of xn−kyk in the expansion of (x + y)n.

and in general(n
k

)
is the number of ways to select k objects from a total of n objects.
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Binomial Coefficients Expanding Expressions of the Form (a + b)n

Binomial Coefficients IV
We can represent the solution to our four applications in terms of

(n
k

)
:

Selecting Subsets

How many subsets of {1, 2, 3, 4, 5} contain exactly 3 elements? We must choose 3
of the 5 elements to be in our subset.
There are

(5
3

)
ways to do this, so there are

(5
3

)
such subsets.

Bit String

How many bit strings have length 5 and weight 3? We must choose 3 of the 5 bits to
be 1’s.
There are

(5
3

)
ways to do this, so there are

(5
3

)
such bit strings.

Lattice Paths
How many lattice paths are there from (0,0) to (3,2)? We must choose 3 of the 5
steps to be towards the right.
There are

(5
3

)
ways to do this, so there are

(5
3

)
such lattice paths.

Binomial Coefficients
What is the coefficient of x3y2 in the expansion of (x + y)5?
The coefficient is

(5
3

)
.
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Binomial Coefficients Properties of Binomial Coefficients and Pascal’s Triangle

Recurrence Relation for Binomial Coefficients

The number of n-bit strings with weight k, denoted by |Bn
k |, is equal to the

binomial coefficient
(n

k

)
, and we have a recurrence relation for |Bn

k |, i.e.,

|Bn
k | = |Bn−1

k−1|+ |B
n−1
k |

with terminal conditions |Bn
n| = 1 and |Bn

0| = 1.
Hence we get the following recurrence relation

Recurrence Relation for Binomial Coefficients)(
n
k

)
=

(
n− 1
k − 1

)
+

(
n− 1

k

)
with terminal conditions

(n
n

)
= 1 and

(n
0

)
= 1.

This recurrence relation has a nice geometric interpretation when the binomial
coefficients are arranged in a triangle, called Pascal’s triangle.
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Binomial Coefficients Properties of Binomial Coefficients and Pascal’s Triangle

Pascal’s Triangle

• Start with a 1 — to represent
(0

0

)
• Place 1 at either end — to represent

(n
0

)
and

(n
n

)
• Other entries is sum of upper left and upper right(n

k

)
=

(n−1
k−1

)
+

(n−1
k

)

n = 0

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

n = 7

n = 8

n = 9

1

1 1

1 12

1 13 3

1 14 6 4

1 15 10 10 5

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1
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Review Exercises 1 (Binomial Coefficients)
Question 1:
Let A = {1, 2, 3, . . . , 9}.

1 How many subsets of A are there? That is, find |P(A)|. Explain.

2 How many subsets of A contain exactly 5 elements? Explain.

3 How many subsets of A contain only even numbers? Explain.

4 How many subsets of A contain an even number of elements? Explain.

Question 2:
How many 9-bit strings (that is, bit strings of length 9) are there which satisfy each of the following
criteria? Explain your answers.

1 Start with the sub-string 101.

2 Have weight 5 (i.e., contain exactly five 1’s) and start with the sub-string 101.

3 Either start with 101 or end with 11 (or both).

4 Have weight 5, and starts with 101 and ends with 11.

Question 3:
How many shortest lattice paths start at (3,3) and

1 end at (10,10)?

2 end at (10,10) and pass through (5,7)?

3 end at (10,10) and avoid (5,7)?

Question 4:
What is the coefficient of x12 in (x + 2)15?
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