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Representing Graphs using.Matrices Handshaking Lemma

Handshaking Lemma

Lemma 1
In any graph the sum of all the vertex-degrees is twice the number of edges,
i.e., ∑

v∈V (G)

deg(v) = 2|E(G)|

A few comments regarding notation:
E(G) represents the set of edges of G.
|E(G)| is the cardinality (number of elements of) E(G), i.e., number of
edges of G.∑
v∈V (G)

means “add over each v in the set V (G)”, i.e., add over each

vertex in the vertex set of G.
Left side equals sum of degrees of all vertices, right side equals twice
the number of edges.
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Representing Graphs using.Matrices Matrix Representation

Representation of Graphs using Adjacency Matrices I
Matrix* representation of graph enables efficient representation of small,
dense (have lots of edges) graphs.

Definition 2 (Adjacency Matrix)
If graph, G, has vertices labelled {1,2, . . . ,n} and has m edges. Then, the
adjacency matrix, A, is the n × n matrix whose ij-th entry is the number of
edges joining vertex i and vertex j . (Note self-loops contribute 2.)

Example 3

−→

1 2

34

A =


2 1 0 1
1 0 1 2
0 1 0 1
1 2 1 0



fro
m

no
de

4
3

2
1

to node
1 2 3 4

*A matrix is a rectangular table of numerical values, where the ij entry corresponds to the
value in row i and column j – think Roman Catholic.
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Representing Graphs using.Matrices Matrix Representation

Representation of Graphs using Adjacency Matrices II

Example 4

1 2

34

A =


2 1 0 1
1 0 1 2
0 1 0 1
1 2 1 0



fro
m

no
de

4
3

2
1

to node
1 2 3 4

The sum of the elements along row i of the adjacency matrix of a graph
is the degree of vertex i .
The adjacency matrix is symmetric (bottom left corner is same as top
right corner).
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Representing Graphs using.Matrices Matrix Representation

Representation of Graphs using Incidence Matrices I

An alternative representation is based on labelling the edges . . .

Definition 5 (Incidence Matrix)
If graph, G, has vertices labelled {1,2, . . . ,n} and has m edges. Then the
incidence matrix, M, is the n ×m matrix whose ij-th entry is 1 if vertex i is
incident to edge j , and 0 otherwise.

Example 6

−→

7

1
1

2

2

3
3

4

4
6

5
M =


1 0 0 1 0 0 2
1 1 0 0 1 1 0
0 1 1 0 0 0 0
0 0 1 1 1 1 0



no
de

4
3

2
1

edge label
1 2 3 4 5 6 7
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Representing Graphs using.Matrices Matrix Representation

Representation of Graphs using Incidence Matrices II

Example 7
7

1
1

2

2

3
3

4

4
6

5
M =


1 0 0 1 0 0 2
1 1 0 0 1 1 0
0 1 1 0 0 0 0
0 0 1 1 1 1 0


no

de
4

3
2

1

edge label
1 2 3 4 5 6 7

The sum down every column is 2 — an edge has two end points.
Self-loops appear as a 2.
Parallel edges result in duplicate columns (see column 5 and 6).
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Review Exercises 1 (Representing Graphs
using.Matrices)
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Paths and Walks Definitions

Walks

Definition 8 (Walk)
Given a graph, G, a walk in G is a finite sequence of edges ofthe form, v0v1,
v1v2, . . . , vm−1vm, in which any two consecutive edges are adjacent or
identical. This walk is also denoted by v0 → v1 → · · · → vm.

A walk determines a sequence of
vertices from the initial vertex, v0, to the
final vertex, vm.
The number of edges in a walk is called
its length.
For example, in the graph on the right,
v → w → x → y → z → z → y → w is
a walk of length 7 from v to w .

Skip

v
w

x

y

z
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Paths and Walks Definitions

Trails, Paths and Cycles I

Definition 9 (Trail, Path, Cycle)
A walk, v0 → v1 → · · · → vm, in which all the edges are distinct is a trail.
If in addition, the vertices v0, v1, . . . , vm are distinct (except, possibly
v0 = vm) then the trial is a path.
A path or trail is closed if v0 = vm and a closed path containing at least one
edge is a cycle.

Note that a loop or pair of multiple edges is a cycle.
A cycle of length 3 is called a triangle.
For example, in the graph on the right,

v → w → x → y → z → z → x is a trail
v → w → x → y → z is a path
v → w → x → y → z → x → v is a
closed trail
v → w → x → y → v is a cycle

Skip

v
w

x

y

z
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Review Exercises 2 (Paths and Walks)
Question 1:
In a Peterson graph, find

(a) a trail of length 5; (b) a path of length 9;

(c) cycles of length 5, 6, 8, and 9; (d) cutsets with 3, 4, and 5 edges.

Question 2:
The girth of a graph is the length of its shortest cycle. Write down the girth of

(a) K9; (b) K5,7; (c) C8; (d) W8.
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How Connected is a Graph? Theoretical Results

Cycles in Bipartite Graphs

While in arbitrary graphs of n vertices cycles can exist of length 2 to n, for
bipartite graphs a cycle length must be even.

Theorem 10
A graph G is a bipartite graph iff each cycle of G is of even length.

You don’t have to prove this result but think why it must be true.

14 of 63



How Connected is a Graph? Theoretical Results

Bounds on Number of Edges
In a connected simple graph, the number of edges increases with the
number of cycles. In particular, in a connected graph of n vertices with the
minimum number of edges, n − 1, there are no cycles, and as the numbers
of edges increase up to the maximum of n(n − 1)/2 the number of cycles is
greater than n!.

Theorem 11
Let G be a simple graph on n vertices. If G has k components, then the
number, m, of edges of G satisfies

n − k ≤ m ≤ (n − k)(n − k + 1)/2

Recall that in a general graph, i.e., with parallel edges, there is no
upper bound on the number of edges.

Corollary 12
Any simple graph with n vertices and more than (n − 2)(n − 1)/2 edges is
connected.

Proof: Put k = 2 in Theorem 11.
15 of 63



How Connected is a Graph? Removing Edges

Disconnecting Sets

Often, of interest is the number of edges or vertices that need to be
removed in order to disconnect a connected graph.

Definition 13 (Disconnecting Set)
A disconnecting set in a connected graph, G, is a set of edges whose
removal disconnects G.

Example 14
The sets {e1,e2,e5} and {e3,e6,e7,e8} are both disconnecting sets of G.

v x z

w y

e1

e2

e5

e3

e6

e7

e8

e4
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How Connected is a Graph? Removing Edges

Cutset

Definition 15 (Cutset, Bridge)
A cutset is a disconnecting set, no proper subset of which is a disconnecting
set.
If a cutset has only one edge, e, it is called a bridge.

The removal of a cutset from a connected graph always results in a
graph with exactly two components.

Example 16
The following graph has two bridges, e1 and e2.

e1

e2

17 of 63



How Connected is a Graph? Removing Edges

Edge Connectivity, λ(G)

The minimum number of edges needed to be removed in order to
disconnect a graph is

Definition 17 (Edge Connectivity)
If G is connected, its edge connectivity, λ(G), is the size of the smallest
cutset in G.

If G contains a bridge then λ(G) = 1.
A graph, G, is said to be k -edge connected if λ(G) ≥ k .

18 of 63



How Connected is a Graph? Removing Vertices

Separating Sets

Analogous concepts exist for the removal of vertices rather than edges.

Definition 18 (Separating Set, cut-vertex)
A separating set in a connected graph, G, is a set of vertices whose removal
disconnects G.
A separating set consists of only one vertex is a cut-vertex.

Example 19
The set {x ,w} is a separating set, and x is a cut-vertex of G.

v x z

w y

p

q

19 of 63
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The set {x ,w} is a separating set, and x is a cut-vertex of G.

v z

y

p

qx

w

Using separating
set {x ,w}
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How Connected is a Graph? Removing Vertices

Vertex Connectivity, κ(G)

The minimum number of vertices needed to be removed in order to
disconnect a graph is

Definition 20 (Vertex Connectivity)
If G is connected, its (vertex) connectivity, κ(G), is the size of the smallest
separating set in G.

If G contains a cut-vertex then κ(G) = 1.
A graph, G, is said to be k-connected if κ(G) ≥ k .
It can be proved that if G is any connected graph, then

κ(G) ≤ λ(G) ≤ δ(G)

where δ(G) is the minimum vertex degree in G.
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Review Exercises 3 (How Connected is a Graph?)
Question 1:
Write down κ(G) and λ(G) for each of the following graphs.

(a) The cycle graph, C6.
(b) The wheel graph, W6.
(c) The complete bipartite graph, K4,7.

Question 2:
Show that, if G is a connected graph with minimum degree k , then λ(G) ≤ k .
Question 3:
Draw a graph G with minimum degree k for which κ(G) < λ(G) < k .
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Eulerian Graphs Theory

Eulerian Graphs

Definition 21 (Eulerian graphs, semi-Eulerian graphs)
A (connected) graph, G, is Eulerian if there exists a closed trail containing
every edge of G. Such a trail is an Eulerian trail or Euler tour.

A non-Eulerian graph, G, is semi-Eulerian if there exists a trail containing
every edge of G. Such a trail is an semi-Eulerian trail.

In general, a trail that passes through every vertex is called a tour.
Unlike a walk, in a trail edges are not repeated. Hence in a Eulerian
tour each edge is traversed once and once only.
Also, unlike a path, in a trail vertices may be repeated. Hence vertices
may be repeated in a Eulerian tour.
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Eulerian Graphs Theory

Example

Eulerian Semi-Eulerian Non-Eulerian

Given a graph, G, of interest is
Does an Euler tour exist, i.e., is G Eulerian?

— Necessary and sufficient conditions are known.
How to find/construct an Euler tour?

— Fleury’s algorithm (linear time).
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Eulerian Graphs Necessary & Sufficient Conditions

Necessary & Sufficient Conditions for Eulerian Graphs
The main result in this section, due to Euler, provides both necessary and
sufficient conditions for the existence of an Euler tour.

Theorem 22 (Euler, 1736)
A connected graph, G, is Eulerian if and only if the degree of each vertex of
G is even.

Based on Euler’s theorem the following result can also be obtained.

Corollary 23
A connected graph is semi-Eulerian if and only if it has exactly two vertices
of odd degree.

Note that in a semi-Eulerian graph, any semi-Eulerian path must have
one vertex of odd degree as its initial vertex and the other as its final
vertex.
Also, by the handshaking lemma, a graph cannot have an odd number
of vertices of odd degree.
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Eulerian Graphs Construction Using Fluery’s algorithm

Construction of Euler Tours — Fluery’s algorithm

The construction of Euler tours is possible in linear time, via implementation
of the following result.

Theorem 24 (Fluery’s algorithm)
Let G be a Eulerian graph. Then the following construction is always
possible and produces an Eulerian tour of G.
Start at any vertex, u, and traverse the edges in an arbitrary manner,
subject only to the following rules:

1 Erase the edges as they are traversed, and if any isolated vertices
result, erase them also.

2 At each stage, use a bridge only if there is no alternative.
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Review Exercises 4 (Eulerian Graphs)
Question 1:
Which of the following are Eulerian? semi-Eulerian?

(a) The complete graph, K5.
(b) The complete bipartite graph, K2,3.

(c) The Peterson graph.

Question 2:
Let G be a connected graph with k (> 0) vertices of odd degree.

(a) How many continuous pen-strokes are needed to draw the diagram without repeating any
line?

Question 3:
An Eulerian graph is randomly traceable from a vertex, v , if whenever we start from v and
traverse the graph in an arbitrary way never using any edge twice, we eventually obtain an
Eulerian trail.
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Hamiltonian Graphs Theory

Hamiltonian Graphs

Definition 25 (Hamiltonian Graph)
A (connected) graph, G, is Hamiltonian if there exists a closed trail that
passes exactly once through each vertex of G. Such a trail is an
Hamiltonian cycle or Hamiltonian tour.

A non-Hamiltonian graph, G, is semi-Hamiltonian if there exists a (open)
path passing through every vertex.

Technical point: A Hamiltonian cycle is a cycle except for the null graph
N1.
While Hamiltonian tours appear to similar to Eulerian tours, passing
through each vertex once rather than through each edge, Hamiltonian
tours are significantly harder than Eulerian, in terms of conditions for
existence, and construction.
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Hamiltonian Graphs Theory

Example

Hamiltonian Semi-Hamiltonian Non-Hamiltonian

Given a graph, G, of interest is
Does an Hamiltonian tour exist, i.e., is G Hamiltonian?

— Some necessary and some sufficient conditions are known.
How to find/construct a Hamiltonian tour?

— No known sub-exponential algorithm.
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Hamiltonian Graphs Necessary Conditions

Necessary Conditions for Hamiltonian Graphs I
Unfortunely, unlike the case for Eulerian graphs, necessary and sufficient
conditions for Hamiltonian graphs are not known. The best simple result is
due to Dirac (1952) which was later generalised by Ore (1960) as follows.

Theorem 26 (Ore, 1960)
If G is a simple graph with n (≥ 3) vertices, and if

deg(v) + deg(w) ≥ n

for each pair of vertices, then G is Hamiltonian.

and, there is a slightly stronger result in the special case of w = v

Corollary 27 (Dirac, 1952)
If G is a simple graph with n (≥ 3) vertices, and if

deg(v) > n/2

for each vertex v, then G is Hamiltonian.
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Review Exercises 5 (Hamiltonian Graphs)
Question 1:

(a) For which values of n is Kn Hamiltonian?
(b) Which complete bipartite graphs are Hamiltonian?
(c) For which values of n is the wheel Wn Hamiltonian?
(d) For which values of n is the k -cube Qk Hamiltonian?

Question 2:
(a) Prove that, if G is a bipartite graph with an odd number of vertices then G is

non-Hamiltonian.
(b) Deduce that the graph bellow is non-Hamiltonian.

(c) Show that if n is odd, it is not possible for a knight to visit all the squares of an n × n
chessboard exactly once by knight’s moves and return to the starting point.
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Minimum Spanning Tree (MST) Trees and Forests

Trees and Forests

Definition 28 (Forest, Tree)
A forest is a graph that contains no cycles, and a connected forest is a tree.

A tree is is the simplest non-trivial type of graph.
Principal concept for searching through graphs.
Underlying data structure in mutable sorted collections.

Example 29

Tree Forest
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Minimum Spanning Tree (MST) Trees and Forests

Properties of Trees

Theorem 30

Let T be a graph with n vertices. Then the following are equivalent:
(i) T is a tree.
(ii) T contains no cycles and has n − 1 edges.
(iii) T is connected and has n − 1 edges.
(iv) T is connected and each edge is a bridge.
(v) Any two vertices of T are connected by exactly one path.
(vi) T contains no cycles, but the addition of any new edges creates exactly

one cycle.
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Minimum Spanning Tree (MST) Trees and Forests

Spanning Trees
Given any connected graph, G, we can choose a cycle and removes any
one of its edges, and the resulting graph remains connected. If we repeat
the process until no cycle remains we obtain a spanning tree of G.

Definition 31 (Spanning Tree, Spanning Forest)
A spanning tree of a connected graph G is a tree that connects all the
vertices of G.
More generally, if G is not connected we obtain a spanning forest.

Example 32

x y z

v we6

e 1

e
2

e3

e8

e
4

e5 e7 x y z

v w

e 1

e
2

e3

e
4

A simple graph and one possible spanning tree.
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Minimum Spanning Tree (MST) Theory

Minimum Spanning Tree

Problem 33 (Minimum Spanning Tree (MST))
Given connected graph G with positive edge weights, find a minimum
weight set of edges that connects all of the vertices.

Example
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21

4

6

9

11

7

5

8

Cayley’s Theorem (1889)
There are nn−2 spanning trees on the complete graph on n vertices⇒ Can’t
solve MST problem by brute force.
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Minimum Spanning Tree (MST) Theory

Applications of MST

Network design.
Telephone, electrical (Otakar Boruvka, 1926), hydraulic, TV cable,
computer, road.

Cluster analysis
Analyzing fungal spore spatial patterns
Microarray gene expression data clustering
Finding clusters of quasars and Seyfert galaxies

Approximation algorithms for NP-hard problems
Travelling salesperson problem

Indirect applications
Max bottleneck paths
LDPC codes for error correction
Learning salient features for real-time face verification
Reducing data storage in sequencing amino acids in a protein
Model locality of particle interactions in turbulent fluid flows
Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
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Minimum Spanning Tree (MST) Theory

The Minimum Spanning Tree Theorem

The following theorem is the basis of the two algorithms covered in this
lecture for construction of minimum spanning trees.

Theorem 34 (MST Theorem)
Given graph, G, with vertex set V and edge iset E. Let U be a proper
subset of V , i.e., U ⊂ V.
If the edge (u, v) has the lowest cost among edges such that u ∈ U and
v ∈ V − U, then there exists an MST that contains the edge (u, v).

This result allows us to develop algorithms based on picking individual
edges, e = (u, v), and by testing whether e is the cheapest edges we
decide to keep it or not.
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Minimum Spanning Tree (MST) Theory

Algorithms for Constructing Minimum Spanning Trees

The following greedy algorithms have been used to solve the minimum
spanning tree problem.

Start with an empty forest (one vertex) and grow trees, adding edges in
non-decreasing weight order, and skipping edges that create a cycle.
Stop when the forest merges to form a single spanning tree —-
Kruskal’s algorithm.
Start with an empty tree (one vertex) and grow, by adding edges in
non-decreasing weight order, and skipping edges that create a cycle.
Stop when tree spans the graph — Prim’s algorithm.
Start with the graph and shrink graph by removing edges in
non-increasing order ensuring that resulting graph is still connected.
Stop when there are no cycles.
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Minimum Spanning Tree (MST) Kruskal’s Algorithm

Kruskal’s Algorithm I

Kruskal’s Algorithm (1956)
1 Initialise forest F = {}
2 Consider edges in non-descending order of weight.

1 If adding edge e to forest F does not create a cycle, then add it.
Otherwise, discard e.

2 If more than one edge with same weight then select any edge.
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7
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Adding edge 4-6 creates cycle Adding edge 3-4 connects two components
(⇒ discard edge) (⇒ edge is in MST)
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Minimum Spanning Tree (MST) Kruskal’s Algorithm

Example

Graph

0

1 2

3
4

5

6 7

4

6

16

24

9
18

23

11

7

5

10 14

8

21

Input
Graph (8, 14)

0: 6(16) 1(4) 5(6)
1: 2(24) 0(4)
2: 1(24) 4(18) 5(23) 3(9)
3: 2(9) 4(11) 7(7)
4: 2(18) 6(10) 7(14) 3(11) 5(5)
5: 2(23) 0(6) 4(5) 6(8)
6: 0(16) 4(10) 7(21) 5(8)
7: 4(14) 6(21) 3(7)

Output
Cost of MST: 50
MST: [0-1 (4), 4-5 (5), 0-5 (6), 3-7 (7), 5-6 (8), 2-3 (9), 3-4 (11)]
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Minimum Spanning Tree (MST) Kruskal’s Algorithm

Kruskal Example (Frame 1/9)
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weight

0
m k

mst

Create, allEdges, an array of edges sorted by weight
(non-decreasing).
Set weight to zero, mst empty.

�< 1 2 3 4 5 6 7 8 9 >�

Start with total weight of zero and no edges added to
MST.
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Minimum Spanning Tree (MST) Kruskal’s Algorithm

Kruskal Example (Frame 2/9)
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44

weight

4
m

0
k

1

Edge(0,1) 4
mst

Testing Edge(0,1):
uf.find(0,1) is false =⇒ add edge to mst.

�< 1 2 3 4 5 6 7 8 9 >�

Find (next) edge with lowest weight, (0,1) and add it
unless it causes a cycle. It doesn’t so add it.
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Minimum Spanning Tree (MST) Kruskal’s Algorithm

Kruskal Example (Frame 3/9)
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9
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Edge(0,1) 4
Edge(4,5) 5

mst

Testing Edge(4,5):
uf.find(4,5) is false =⇒ add edge to mst.

�< 1 2 3 4 5 6 7 8 9 >�

Find (next) edge with lowest weight, (4,5) and add it
unless it causes a cycle. It doesn’t so add it.
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Minimum Spanning Tree (MST) Kruskal’s Algorithm

Kruskal Example (Frame 4/9)
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Edge(0,1) 4
Edge(4,5) 5
Edge(0,5) 6

mst

Testing Edge(0,5):
uf.find(0,5) is false =⇒ add edge to mst.

�< 1 2 3 4 5 6 7 8 9 >�

Find (next) edge with lowest weight, (0,5) and add it
unless it causes a cycle. It doesn’t so add it.
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Minimum Spanning Tree (MST) Kruskal’s Algorithm

Kruskal Example (Frame 5/9)
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Edge(0,1) 4
Edge(4,5) 5
Edge(0,5) 6
Edge(3,7) 7

mst

Testing Edge(3,7):
uf.find(3,7) is false =⇒ add edge to mst.

�< 1 2 3 4 5 6 7 8 9 >�

Find (next) edge with lowest weight, (3,7) and add it
unless it causes a cycle. It doesn’t so add it.
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Minimum Spanning Tree (MST) Kruskal’s Algorithm

Kruskal Example (Frame 6/9)
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Edge(0,1) 4
Edge(4,5) 5
Edge(0,5) 6
Edge(3,7) 7
Edge(5,6) 8

mst

Testing Edge(5,6):
uf.find(5,6) is false =⇒ add edge to mst.

�< 1 2 3 4 5 6 7 8 9 >�

Find (next) edge with lowest weight, (5,6) and add it
unless it causes a cycle. It doesn’t so add it.
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Minimum Spanning Tree (MST) Kruskal’s Algorithm

Kruskal Example (Frame 7/9)
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Edge(0,1) 4
Edge(4,5) 5
Edge(0,5) 6
Edge(3,7) 7
Edge(5,6) 8
Edge(2,3) 9

mst

Testing Edge(2,3):
uf.find(2,3) is false =⇒ add edge to mst.

�< 1 2 3 4 5 6 7 8 9 >�

Find (next) edge with lowest weight, (2,3) and add it
unless it causes a cycle. It doesn’t so add it.
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Minimum Spanning Tree (MST) Kruskal’s Algorithm

Kruskal Example (Frame 8/9)
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Edge(0,1) 4
Edge(4,5) 5
Edge(0,5) 6
Edge(3,7) 7
Edge(5,6) 8
Edge(2,3) 9

mst

Testing Edge(4,6):
uf.find(4,6) is true =⇒ skip edge to avoid cycle.

�< 1 2 3 4 5 6 7 8 9 >�

Find (next) edge with lowest weight, (4,6) and add it
unless it causes a cycle. It does so skip it.
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Minimum Spanning Tree (MST) Kruskal’s Algorithm

Kruskal Example (Frame 9/9)
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7

Edge(0,1) 4
Edge(4,5) 5
Edge(0,5) 6
Edge(3,7) 7
Edge(5,6) 8
Edge(2,3) 9
Edge(3,4) 11

mst

Testing Edge(3,4):
uf.find(3,4) is false =⇒ add edge to mst.

�< 1 2 3 4 5 6 7 8 9 >�

Find (next) edge with lowest weight, (3,4) and add it
unless it causes a cycle. It doesn’t so add it.
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Minimum Spanning Tree (MST) Kruskal’s Algorithm

Kruskal Example (Frame 10/9)
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Edge(0,1) 4
Edge(4,5) 5
Edge(0,5) 6
Edge(3,7) 7
Edge(5,6) 8
Edge(2,3) 9
Edge(3,4) 11

mst

Loop terminates as k=g.V()-1

=⇒ mst contains a spanning tree.

�< 1 2 3 4 5 6 7 8 9 >�

We have added n − 1 = 7 edges connecting all n = 8
vertices, so can stop.
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Review Exercises 6 (Minimum Spanning Tree (MST))
Question 1:
A company is considering building a gas pipeline to
connect 4 wells (a, b, c and d) to a process plant p.
The possible pipelines that they can construct and their
costs (in millions of euro) are shown in the accompany-
ing graph.

What pipelines do you suggest be built and what is the
total cost of your suggested pipeline network?

p

a

b

cd

3

7

32

6

85

10

4

Question 2:
Apply Kruskal’s algorithm to determine a minimum cost spanning tree for the graph with the
following cost matrix. How many such trees are there?

A B C D E F G H

A 0 12 0 14 11 0 17 8

B 12 0 9 0 12 15 10 9

C 0 9 0 18 14 31 0 9

D 14 0 18 0 0 6 23 14

E 11 12 14 0 0 15 16 0

F 0 15 31 6 15 0 8 16

G 17 10 0 23 16 8 0 22

H 8 9 9 14 0 16 22 0
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NetworkX — A Python Library for Graphs Overview

NetworkX — A quick example

quick_example.py

3 import networkx as nx
4

5 G = nx.Graph()
6 G.add_edge(’a’, ’b’, weight=0.1)
7 G.add_edge(’b’, ’c’, weight=1.5)
8 G.add_edge(’a’, ’c’, weight=1.0)
9 G.add_edge(’c’, ’d’, weight=2.2)

10

11 nx.draw(G)
12

13 print(’Nodes = ’, G.nodes())
14 print(’Edges = ’, G.edges())
15 print(’Path = ’, nx.shortest_path(G, ’b’, ’d’))

quick_example.py

Nodes = [’a’, ’c’, ’b’, ’d’]
Edges = [(’a’, ’c’), (’a’, ’b’), (’c’, ’b’), (’c’, ’d’)]
Path = [’b’, ’c’, ’d’]
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NetworkX — A Python Library for Graphs Overview

NetworkX Overview

Features
Node-centric view of network.
NetworkX defines no custom node objects or edge objects.
Nodes can be any hashable object, while edges are tuples with optional
edge data (stored in dictionary).
Any Python object is allowed as edge data and it is assigned and
stored in a Python dictionary (default empty).
Nearly 100% python — some rendering capabilities are based on
external tools (graphviz).
Extensive set of native readable and writable formats.

Use cases
Focus on computational network modelling.
Prototyping new algorithms or models.
Suitable for medium sized problems (1M/10M nodes/edges).

Most of the core algorithms rely on extremely fast legacy code.
But poor use of memory/threads needed for larger problems.
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NetworkX — A Python Library for Graphs Using NetworkX

Importing the library

NetworkX

>>> import networkx as nx

We could use “from network import *” but then searching for functions is
more difficult, since can’t use the code completion features or use dir
function.

matplotlib

>>> import matplotlib.pyplot as plt

Only needed for rendering graphs.
Use IPython magic %matplotlib inline to embed images.

numpy

>>> import numpy as np

Only needed when explicitly dealing with matrix representation.
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Creating graph and adding nodes

Construction of empty graph

>>> g = nx.Graph()

There are different Graph classes for undirected and directed networks.
NetworkX includes many graph generator functions and facilities to
read and write graphs in many formats.

Adding/Removing Nodes

One node at a time:
>>> g.add_node(1)

A list of nodes
>>> g.add_nodes_from([8,15])

A container of nodes
>>> h = nx.path_graph(10)
>>> g.add_nodes_from(h)

You can remove any node of the graph (error if not exist)
>>> g.remove_node(2)
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NetworkX — A Python Library for Graphs Using NetworkX

Nodes

A node can be any hashable object such as strings, numbers, files,
functions, and more.

Create an empty graph . . .
>>> g = nx.Graph()

Import the math library . . .
>>> import math

Add the function math.cos as a node to graph g . . .
>>> g.add_node(math.cos)

Create a file handle . . .
>>> fh = open(’tmp.txt ’ , ’w’)

Add the file handle as a node to the graph . . .
>>> g.add_node(fh)

List graph nodes . . .
>>> print (g.nodes())
[<open file ’tmp.txt ’ , mode ’w’at 0x10fd01f60>, <built−in function cos>]
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Edges

Adding a single edge

>>> g.add_edge(1,2)
or create an (edge) tuple and unpack it using *
>>> e = (1,2)
>>> g.add(*e)

Adding list of edges

>>> g.add_edges_from([(1,2), (1,3)])

Adding from a container of edges

>>> h = nx.path_graph(10)
>>> g.add_edges_from(h.edges())

Removing edges
Can remove a single edge using g.remove_edge or a list of edges using
g.remove_edges_from. Exception raised if edge does not exist.
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Accessing Nodes and Edges

>>> g = nx.Graph()
>>> g.add_edges_from([(1 ,2) ,(1 ,3)])
>>> g.add_node(’a’)

Graph order and size

>>> g.number_of_nodes() # also g. order ()
4
>>> g.number_of_edges() # also g. size ()
2

Node and Edge lists

>>> g.nodes()
[ ’a’ , 1, 2, 3]
>>> g.edges()
[(1, 2), (1, 3)]

Adjacency

>>> g.neighbors(1)
[2, 3]
>>> g.degree(1)
2
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Accessing Node and Edge Properties

>>> g = nx.Graph()

Node Properties

Any NetworkX graph behaves like a Python dictionary with nodes as
primary keys . . .
>>> g.add_node(1, time=’10am’, day=’Fri’)
>>> g.node[1]
{ ’day’: ’ Fri ’ , ’ time’ : ’10am’}
>>> g.node[1][ ’ time’ ]
’10am’

Edge properties

Similar to node, but the special edge attribute ’weight’ should always be
numeric and holds values used by algorithms requiring weighted edges.
>>> g.add_edge(1, 2, weight=4.0, status=’stable’ )
>>> g [1][2]
{ ’capacity’ : ’42’, ’weight’ : 4.0}
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Node and Edge Iterators

Many applications require iteration over nodes or over edges — simple in
NetworkX.

>>> g = nx.Graph()
>>> g.add_edge(1, 2, weight=1.5)
>>> g.add_edge(2, 3, weight=2.5)

Node Iterator

>>> for node in g.nodes():
print (node, g.degree(node))

1 1
2 2
3 1

Edge Iterator

>>> for u, v, d in g.edges(data=True):
print (u, v, d[ ’weight’ ])

1 2 1.5
2 3 2.5
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