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Definitions and Notation Sums and Products

Summation Notation
The

∑
operator is used to denote the addition of a, possibly large, number of

elements from a sequence/list.
It can be implemented using a for loop in Python/Java/Processing.

Example 1
10∑

k=1

[
k2
]

︸ ︷︷ ︸
“Determine the value of expression within the brackets

as k = 1, 2, 3, . . . , 10 and add all the results.”

= 12︸︷︷︸
k = 1

+ 22︸︷︷︸
k = 2

+ 32︸︷︷︸
k = 3

+ 42︸︷︷︸
k = 4

+ · · ·+ 102︸︷︷︸
k = 10

= 1 + 4 + 9 + 16 + 25 + 36 + · · ·+ 100
= 385

sum.py

1 r e s u l t = 0
2 f o r k in range ( 1 , 1 1 ) :
3 t e rm = k*k
4 r e s u l t += te rm
5 p r i n t ( r e s u l t )

sum.py
sum.py

8 s e q u e n c e = [ k*k f o r k in range ( 1 , 1 1 ) ]
9 r e s u l t = sum ( s e q u e n c e )

10 p r i n t ( r e s u l t )

sum.py

385
385
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Definitions and Notation Sums and Products

Product Notation
The

∏
operator is used to denote the product of a, possibly large, number of

elements from a sequence/list.
It can be implemented using a for loop in Python/Java/Processing.

Example 2
10∏

k=1

[
k2
]

︸ ︷︷ ︸
“Determine the value of expression within the brackets

as k = 1, 2, 3, . . . , 10 and multiply all the results.”

= 12︸︷︷︸
k = 1

× 22︸︷︷︸
k = 2

× 32︸︷︷︸
k = 3

× 42︸︷︷︸
k = 4

× · · · × 102︸︷︷︸
k = 10

= 1× 4× 9× 16× 25× 36× · · · × 100
= 13, 168, 189, 440, 000

product .py

1 r e s u l t = 1
2 f o r k in range ( 1 , 1 1 ) :
3 t e rm = k*k
4 r e s u l t *= te rm
5 p r i n t ( r e s u l t )

product .py There is no product function, similar to the
sum function in Python.

FYI: Guido van Rossum, vetoed it
https://bugs.python.org/issue1093

and see reduce function

13168189440000
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Definitions and Notation Sums and Products

Sequence
Informally, a sequence is just an ordered list of numbers. Since the order is
important we can label the values in the list, starting with zero, then one and so on.
This gives us the formal definition of a sequence

Definition 3 (Sequence)
A sequence is a function from the set of natural numbers, N = {0, 1, 2, 3, 4, . . .} to
a some set A. So we have

0

a0

1

a1

2

a2

3

a3

4

a4

n

an

· · · · · ·

and
an is the image of n, and is called a term/element of the sequence.

To refer to the entire sequence at once, we will write (an)n∈N or (an)n≥0, or if
we are being sloppy, just (an) (in which case we assume we start the sequence
with a0).
We might replace the a with another letter, and sometimes we omit a0, starting
with a1, in which case we would use (an)n≥1 to refer to the entire sequence.
The numbers in the subscripts are called indices (the plural of index).
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Definitions and Notation Sums and Products

Examples of Sequences
The sequence an = n2, where n = 1, 2, 3, . . . has elements

1, 4, 9, 16, 25, 36, 49, . . .

The sequence an = (−1)n, where n = 0, 1, 2, . . . has elements

1,−1, 1,−1, 1,−1, . . .

The sequence an = 2n, where n = 0, 1, 2, . . . has elements

1, 2, 4, 8, 16, 32, 64, 128, . . .

The Fibonacci sequence has elements

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

6 of 28



Definitions and Notation Sums and Products

Closed vs Recursive Formula for Sequences
Since no number of initial terms in a sequence is enough to define a sequence we
need to specify a rule for the general term in the sequence — we have two options:

Definition 4 (Closed Formula and Recursive Definition)
A closed formula for a sequence (an)n∈N is a formula for an using a fixed finite
number of operations on n. ).
A recursive definition for a sequence (an)n∈N consists of a recurrence relation:
an equation relating a term of the sequence to previous terms (terms with
smaller index) and an initial/terminal condition.

Example
The Fibonacci sequence (an) = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 5) has closed formula

an =

(
1+
√

5
2

)n
−
(

1+
√

5
2

)−n

√
5

and recursive formula

an = an−1 + an−2︸ ︷︷ ︸
recurrence relation

and a0 = 0, a1 = 1︸ ︷︷ ︸
terminal conditions

Hard to obtain, easy to use

Easy to obtain,
hard to use
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Definitions and Notation Sums and Products

Example

Example 5
Find a6 in the sequence defined by an = 2an−1 − an−2 with a0 = 3 and a1 = 4.

Solution. Using n = 6, we know that a6 = 2a5 − a4. So to find a6 we need to find
a5 and a4.
Similarly, working backwards we have

a5 = 2a4 − a3, a4 = 2a3 − a2, a3 = 2a2 − a1 and a2 = 2a1 − a0,

So now knowing a1 and a0 we can work forwards again:

a0 = 3
a1 = 4
a2 = 2 · 4− 3 = 5
a3 = 2 · 5− 4 = 6
a4 = 2 · 6− 5 = 7
a5 = 2 · 7− 6 = 8
a6 = 2 · 8− 7 = 9.

Note that in this case a closed
formula for an exists. Namely,
an = n + 3.
A closed formula is easier to use
to calculate a general term, but it
is often much harder, if not im-
possible, to derive.
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Review Exercises 1 (Definitions and Notation)
Question 1:
Expand the following sums

(a)
7∑

k=4

k (b)
5∑

k=1

(k1 − 1) (c)
4∑

n=1

(10n) (d)
5∑

k=1

(k1 − 1)

Question 2:
Write the following expressions using summation notation

(a) 2 + 4 + 6 + 8 + 10 (b) 1 + 4 + 7 + 10 (c)
1
4
+

1
2
+ 1 + 2 + 4

Question 3:
Expand the following sums

(a)
4∏

k=−4

k (b)
4∏

k=1

(k1 − 1) (c)
∏
k∈S

(−1)k where S = {2, 4, 6, 7}.

Question 4:
For each of the following sequences, determine a recursive definition.

(a) 2, 4, 6, 10, 16, 26, 42, . . ..
(b) 5, 6, 11, 17, 28, 45, 73, . . ..
(c) 0, 0, 0, 0, 0, 0, 0, . . ..

Question 5:
Show that an = 3 · 2n + 7 · 5n is a solution to the recurrence relation an = 7an−1 − 10an−2. What
would the initial conditions need to be for this to be the closed formula for the sequence?
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Arithmetic and Geometric Progressions Definition of Arithmetic and Geometric Progression

Arithmetic Progression/Sequence

Definition 6 (Arithmetic Progression/Sequence (AP))
A sequence is called arithmetic if the terms of the sequence differ by a constant.
Suppose the initial term (a0) of the sequence is a and the common difference is d,
then we have sequence

a,

︸︷︷︸
a0

+d

a + d,

︸︷︷︸
a1

+d

a + 2d,

︸︷︷︸
a2

+d

a + 3d,

︸︷︷︸
a3

+d

a + nd,

︸︷︷︸
an

+d

. . . . . .

Recursive definition: an = an−1 + d with a0 = a.
Closed formula: an = a + dn.

Example 7
Find recursive definitions and closed formulas for the sequences below. Assume the
first term listed is a0.

1 2, 5, 8, 11, 14, . . ..
2 50, 43, 36, 29, . . ..

11 of 28
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Arithmetic and Geometric Progressions Definition of Arithmetic and Geometric Progression

Geometric Progression/Sequence

Definition 8 (Geometric Progression/Sequence (GP))
A sequence is called geometric if the ratio between successive terms is constant.
Suppose the initial term a0 is a and the common ratio is r. Then we have, sequence

a,

︸︷︷︸
a0

×r

ar,

︸︷︷︸
a1

×r

ar2,

︸︷︷︸
a2

×r

ar3,

︸︷︷︸
a3

×r

arn,
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an

×r

. . . . . .

Recursive definition: an = ran−1 with a0 = a.
Closed formula: an = arn.

Example 9
Find the recursive and closed formula for the sequences below. Again, the first term
listed is a0.

1 3, 6, 12, 24, 48, . . .
2 27, 9, 3, 1, 1/3, . . .
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Arithmetic and Geometric Progressions Partial Sums of AP and GP

Motivation
Look at the sequence (Tn)n≥1 which starts 1, 3, 6, 10, 15, . . .. These are called the
triangular numbers since they represent the number of dots in an equilateral triangle
(think of how you arrange 10 bowling pins: a row of 4 plus a row of 3 plus a row of
2 and a row of 1).

T1 = 1 T2 = 3 T3 = 6 T4 = 10

+2 +3 +4 +5

Is this sequence arithmetic?

No, since 3− 1 = 2 and 6− 3 = 3 6= 2, so there is no common difference.

Is the sequence geometric?

No. 3/1 = 3 but 6/3 = 2, so there is no common ratio.
However, notice that the differences between terms generate an arithmetic
sequence: 2, 3, 4, 5, 6, . . .. This says that the nth term of the triangular
sequence is the sum of the first n terms in the sequence 1, 2, 3, 4, 5, . . ., i.e, the
triangular sequence is a sequence of partial sums.
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Arithmetic and Geometric Progressions Partial Sums of AP and GP

Summing Arithmetic Sequences: Reverse and Add I

Example 10

Find the sum: 2 + 5 + 8 + 11 + 14 + · · ·+ 470.

Solution. If we add the first and last terms, we get 472. The second term and
second-to-last term also add up to 472. To keep track of everything, we might
express this as follows. Call the sum S. Then,

S = 2 + 5 + 8 + · · ·+ 467 + 470
+ S = 470 + 467 + 464 + · · ·+ 5 + 2

2S = 472 + 472 + 472 + · · ·+ 472 + 472

Hence, to find 2S then we add 472 to itself a number of times. What number?
We need to decide how many terms are in the sum. Since the terms form an
arithmetic sequence, the nth term in the sum (counting 2 as the 0th term) can be
expressed as 2 + 3n. If 2 + 3n = 470 then n = 156. So n ranges from 0 to 156,
giving 157 terms in the sum. This is the number of 472’s in the sum for 2S. Thus

2S = 157× 472 = 74104 =⇒ S =
74104

2
= 37052

14 of 28
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Arithmetic and Geometric Progressions Partial Sums of AP and GP

Summing Arithmetic Sequences: Reverse and Add II
The process covered in the previous slide will work for any sum of arithmetic
sequences.
STEP 1 Call the sum S.
STEP 2 Reverse and add.
STEP 3 This produces a single number added to itself many times.
STEP 4 Determine the number of times.
STEP 5 Multiply. Divide by 2. Done

Definition 11 (Arithmetic Series)
The sum of the terms of the arithmetic sequence

Sn =
[
a
]
+
[
a + d

]
+
[
a + 2d

]
+ · · ·+

[
a + nd

]
is called an arithmetic series and is given by

Sn = (n + 1)a +
dn(n + 1)

2
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Arithmetic and Geometric Progressions Partial Sums of AP and GP

Summing Geometric Sequences: Multiply and Subtract I

To find the sum of a geometric sequence, we cannot just reverse and add. Instead
we multiply and subtract:

Example 12
What is 3 + 6 + 12 + 24 + · · ·+ 12288?

This terms in the sum are from a geometric progression with initial term, a0 = 3,
and common ratio, r = 2.

STEP 1 Call the sum S.
STEP 2 Multiply each term by the common ratio, r = 2
STEP 3 Subtract, and solve for S.

S = 3+ 6 + 12 + 24 + · · ·+ 12288
2S = 6 + 12 + 24 + · · ·+ 12288 +24576
−S = 3+ 0 + 0 + 0 + · · ·+ 0 −24576

− S = 3− 24576 =⇒ S = 24573

16 of 28
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Arithmetic and Geometric Progressions Partial Sums of AP and GP

Summing Geometric Sequences: Multiply and Subtract II

Definition 13 (Geometric Series)
The sum of the terms of the geometric sequence

Sn =
[
a
]
+
[
ar
]
+
[
ar2]+ · · ·+ [arn]

is called a geometric series and is given by

Sn =
a(1− rn+1)

1− r

In the special case of −1 < r < 1 the terms in the geometric sequence tends
towards zero fast enough that the sum of the series tends to the finite value

S∞ = lim
n→∞

Sn = lim
n→∞

a
1− r

since rn+1 → 0 as n→∞.
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Review Exercises 2 (Arithmetic and Geometric
Progressions)
Question 1:
Consider the sequence 5, 9, 13, 17, 21, . . . with a1 = 5

(a) Give a recursive definition for the sequence.
(b) Give a closed formula for the nth term of the sequence.
(c) Is 2013 a term in the sequence? Explain.
(d) How many terms does the sequence 5, 9, 13, 17, 21, . . . , 533 have?
(e) Determine the sum: 5 + 9 + 13 + 17 + 21 + · · ·+ 533. Show your work.
(f) Use what you found above to find bn, the nth term of 1, 6, 15, 28, 45, . . ., where b0 = 1
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Solving Recurrence Relations

Fibonacci Sequence — Rabbit Population
Month

Population
(In pairs)

1

1

2

1

3

2

4

3

5

5

6

8

• Start with one immature pair of rabbits.

• Rabbits take a month to mature.

• Each mature pair produce an immature pair a month.

• Repeat

. . . until out of carrots/space.
(The insertion of the zero at start (for month zero) is a
modern convention to simplify formula)
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(The insertion of the zero at start (for month zero) is a
modern convention to simplify formula)
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Solving Recurrence Relations

Solving Recurrence Relations
The Fibonacci has recursive definition

an = an−1 + an−2︸ ︷︷ ︸
recurrence relation

and a0 = 0, a1 = 1︸ ︷︷ ︸
terminal conditions

We would like to obtain a closed formula for an. To do this we will study the
following more general problem:

Problem 14
Given recurrence relation

an = Aan−1 + Ban−2 with a0, a1 known

with known coefficients A and B, determine a closed formula for an for all n > 1.

fib_recursive .py

1 def f i b ( n ) :
2 i f n==0 or n ==1: re turn n
3 re turn f i b ( n −1) + f i b ( n −2)
4

5 f o r k in [ 0 , 1 , 6 , 1 0 , 3 0 ] :
6 p r i n t ( " f i b (%s ) = %s " % ( k , f i b ( k ) ) )

fib_recursive .py

f i b ( 0 ) = 0
f i b ( 1 ) = 1
f i b ( 6 ) = 8
f i b ( 1 0 ) = 55
f i b ( 3 0 ) = 832040
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Solving Recurrence Relations

The Characteristic Root Technique
STEP 1 Given recurrence relation

an = Aan−1 + Ban−2

we assume that the solution will look like an = λn for some, as yet, unknown λ.
STEP 2 We substitute our guess into the recurrence relation and simplify to get an
equation involving a polynomial (a quadratic) — called the characteristic equation.
STEP 3 We solve the characteristic equation for λ and build solution using the
following rules:

If the characteristic polynomial has two distinct solutions, say λ = λ1 and
λ = λ2, then the solution to the recurrence relation looks like

an = Cλn
1 + Dλn

2,

If the characteristic equation has one repeated solutions, say λ = λ1 = λ2,
then the solution to the recurrence relation looks like

an = Cλn
1 + Dnλn

1

STEP 4 Use the known values of a0 and a1 to determine the coefficients C and D.
22 of 28



Solving Recurrence Relations

The Characteristic Root Technique
STEP 1 Given recurrence relation

an = Aan−1 + Ban−2

we assume that the solution will look like an = λn for some, as yet, unknown λ.
STEP 2 We substitute our guess into the recurrence relation and simplify to get an
equation involving a polynomial (a quadratic) — called the characteristic equation.
STEP 3 We solve the characteristic equation for λ and build solution using the
following rules:

If the characteristic polynomial has two distinct solutions, say λ = λ1 and
λ = λ2, then the solution to the recurrence relation looks like

an = Cλn
1 + Dλn

2,

If the characteristic equation has one repeated solutions, say λ = λ1 = λ2,
then the solution to the recurrence relation looks like

an = Cλn
1 + Dnλn

1

STEP 4 Use the known values of a0 and a1 to determine the coefficients C and D.
22 of 28



Solving Recurrence Relations

The Characteristic Root Technique
STEP 1 Given recurrence relation

an = Aan−1 + Ban−2

we assume that the solution will look like an = λn for some, as yet, unknown λ.
STEP 2 We substitute our guess into the recurrence relation and simplify to get an
equation involving a polynomial (a quadratic) — called the characteristic equation.
STEP 3 We solve the characteristic equation for λ and build solution using the
following rules:

If the characteristic polynomial has two distinct solutions, say λ = λ1 and
λ = λ2, then the solution to the recurrence relation looks like

an = Cλn
1 + Dλn

2,

If the characteristic equation has one repeated solutions, say λ = λ1 = λ2,
then the solution to the recurrence relation looks like

an = Cλn
1 + Dnλn

1

STEP 4 Use the known values of a0 and a1 to determine the coefficients C and D.
22 of 28



Solving Recurrence Relations

Example — Distinct Solutions to Characteristic Equation I

Example 15
Solve the recurrence relation an = 7an−1 − 10an−2 with a0 = 2 and a1 = 3.

Solution. First write recurrence equation as

an − 7an−1 + 10an−2 = 0

STEP 1 Try solution of the form an = λn

an = λn =⇒ an−1 = λn−1 and an−2 = λn−2

STEP 2 Substituting an, an−1 and an−2 into the recurrence equation . . .

an − 7an−1 + 10an−2 = 0 =⇒
[
λn
]
− 7
[
λn−1

]
+ 10

[
λn−2

]
= 0

=⇒
[
λ2λn−2

]
− 7
[
λλn−2

]
+ 10

[
λn−2

]
= 0

=⇒ λn−2
[
λ2 − 7λ+ 10

]
= 0

=⇒ λ2 − 7λ+ 10 = 0 characteristic equation
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Solving Recurrence Relations

Example — Distinct Solutions to Characteristic Equation II
STEP 3 Solve the characteristic equation . . . and build solution

λ2 − 7xλ+ 10 = 0 =⇒ (λ− 2)(λ− 5) = 0

We have two distinct roots, λ = 2 and λ = 5 so we know the solution looks like

an = C2n + D5n

where C and D will be determined using the initial conditions.

STEP 4 Determine coefficients C and D using a0 = 2 and a1 = 3 . . .
Plug in n = 0 and n = 1 into an to get a system of two equations with two
unknowns, which we solve

2 = a0 = C20 + D50 = C + D
3 = a1 = C21 + D51 = 2C + 5D

}
=⇒ C =

7
3

and D = −1
3

So the solution to the recurrence relation is

an =
7
3

2n − 1
3

3n.
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Solving Recurrence Relations

Example — Repeated Solution to Characteristic Equation I

Example 16
Solve the recurrence relation an = 6an−1 − 9an−2 with initial conditions a0 = 1 and
a1 = 4.

Solution. First write recurrence equation as

an − 6an−1 + 9an−2 = 0

STEP 1 Try solution of the form an = λn

an = λn =⇒ an−1 = λn−1 and an−2 = λn−2

STEP 2 Substituting an, an−1 and an−2 into the recurrence equation . . .

an − 6an−1 + 9an−2 = 0 =⇒
[
λn
]
− 6
[
λn−1

]
+ 9
[
λn−2

]
= 0

=⇒
[
λ2λn−2

]
− 6
[
λλn−2

]
+ 9
[
λn−2

]
= 0

=⇒ λn−2
[
λ2 − 6λ+ 9

]
= 0

=⇒ λ2 − 6λ+ 9 = 0 characteristic equation

25 of 28
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Solving Recurrence Relations

Example — Distinct Solutions to Characteristic Equation II
STEP 3 Solve the characteristic equation . . . and build solution

λ2 − 6λ+ 9 = 0 =⇒ (λ− 3)2 = 0

We have a repeated root, λ = 3 so we know the solution looks like

an = C3n + Dn3n

where C and D will be determined using the initial conditions.

STEP 4 Determine coefficients C and D using a0 = 1 and a1 = 4 . . .
Plug in n = 0 and n = 1 into an to get a system of two equations with two
unknowns, which we solve

1 = a0 = C30 + D(0)(30) = a = C
4 = a1 = C(31) + D(1)(31) = 3C + 3D

}
=⇒ C = 1 and D =

1
3

So the solution to the recurrence relation is

an = 3n +
1
3

n3n.

26 of 28
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an = C3n + Dn3n

where C and D will be determined using the initial conditions.

STEP 4 Determine coefficients C and D using a0 = 1 and a1 = 4 . . .
Plug in n = 0 and n = 1 into an to get a system of two equations with two
unknowns, which we solve

1 = a0 = C30 + D(0)(30) = a = C
4 = a1 = C(31) + D(1)(31) = 3C + 3D

}
=⇒ C = 1 and D =

1
3

So the solution to the recurrence relation is

an = 3n +
1
3

n3n.
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Review Exercises 3 (Solving Recurrence Relations)
Question 1:
Show that 4n is a solution to the recurrence relation an = 3an−1 + 4an−2.
Question 2:
Determime the solution to the recurrence relation an = 3an−1 + 4an−2 with initial terms a0 = 2 and
a1 = 3
Question 3:
Determime the solution to the recurrence relation an = 3an−1 + 4an−2 with initial terms a0 = 5 and
a1 = 8.
Question 4:
Solve the recurrence relation an = 2an−1 − an−2.

(a) What is the solution if the initial terms are a0 = 1 and a1 = 2?
(b) What do the initial terms need to be in order for a9 = 30?
(c) For which x are there initial terms which make a9 = x?

Question 5:
Determine the closed formula for the Fibonacci sequence.
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